
UNIX Application Migration Guide

Chapter 9: Win32 Code Conversion

Larry Twork, Larry Mead, Bill Howison, JD Hicks, Lew Brodnax, Jim McMicking, Raju Sakthivel,
David Holder, Jon Collins, Bill Loeffler
Microsoft Corporation

October 2002

Applies to:
 Microsoft® Windows®

UNIX applications

The patterns & practices team has decided to archive this content to allow us to streamline our latest
content offerings on our main site and keep it focused on the newest, most relevant content. However,
we will continue to make this content available because it is still of interest to some of our users.
We offer this content as-is, without warranty that it is still technically accurate as some of the material is
undoubtedly outdated. Note that the content may contain URLs that were valid when originally
published, but now link to sites or pages that no longer exist.

Summary: Chapter 9: Win32 Code Conversion covers the fundamentals of converting code from UNIX
to Windows. Functional areas that surface when migrating to Win32 such as processes, threads, signal
handling, memory management, networking and a host of related subjects are covered. In general, the
material is presented first with background on the migration issue followed by code samples to illustrate
before and after migration. (212 printed pages)

Contents

Introduction
Processes
Signals and Signal Handling
Threads
Memory Management
Users, Groups and Security
File and Data Access
Interprocess Communication
Sockets and Networking
The Process Environment
Multiprocessor Considerations

UNIX Code Migration Guide

Page 1 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Daemons and Services
Appendixes

Introduction

This chapter describes how you can modify the source code for your UNIX application so that it will
compile on the Microsoft® Windows® operating system. You need to modify your code due to the
differences between the UNIX and Windows application and coding environments described earlier in
this guide.

The potential coding differences that need to be addressed are described in the following categories:

l Processes
l Signals and signal handling
l Threads
l Memory management
l Users, groups, and security
l File and data access
l Interprocess communication
l Sockets and networking
l Process environment
l Multiprocessor considerations
l Daemons and services

For each of these categories, this chapter:

l Describes the coding differences.
l Outlines options for converting the code.
l Illustrates with source code examples.

You can then choose the solution appropriate to your application and use these examples as a basis for
constructing your Windows code.

This guide gives you sufficient information so that you can choose the best method of converting the
code. Once you have made your choice, you can refer to the standard documentation to ensure that you
understand the details of the Microsoft Win32® application programming interface functions and
application program interfaces (APIs). Throughout this chapter, there are references for further
information on the recommended coding changes. In particular, references to the detail of the function
calls and libraries are given.

Processes

The UNIX and Windows process models are very different, and the major difference lies in the creation
of processes. UNIX uses fork to create a new copy of a running process and exec to replace a process's
executable file with a new one. Windows does not have a fork function. Instead, Windows creates
processes in one step by using CreateProcess. While there is no need in Win32 to execute the process
after its creation (as it will already by executing the new code), the standard exec functions are still
available in Win32.

Page 2 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

These differences (and others) result in the need to convert the UNIX code before it can run on a Win32
platform.

The areas that you need to consider that are covered in this section are:

l Process creation
l Replacing a process's executable code
l Spawning child processes and the process hierarchy
l Waiting for a child process
l Setting process resource limits

The concept of Windows Jobs is also introduced, which allows you to group processes together for
management purposes. This functionality is not available in UNIX.

Note: There are a number of process management functions in the Win32 API. For details
of these functions, consult the Win32 API reference.

Creating a New Process

In UNIX, a developer creates a new process by using fork. The fork function creates a child process
that is an almost exact copy of the parent process. The fact that the child is a copy of the parent ensures
that the process environment is the same for the child as it is for the parent.

In Windows, the CreateProcess function enables the parent process to create an operating environment
for a new process. The environment includes the working directory, window attributes, environment
variables, execution priority and command line arguments. A handle is returned by the CreateProcess
function, which enables the parent application to perform operations on the process and its environment
while it is executing. Unlike UNIX, the executable file run by CreateProcess is not a copy of the parent
process, and it has to be explicitly specified in the call to CreateProcess.

An alternative to CreateProcess is to use one of the spawn functions that is present in the standard C
runtime. There are 16 variations of the spawn function. Each spawn function creates and executes a
new process. Many of these have the same functionality as the similarly named exec functions. The
spawn functions include an additional argument that permits the new process to replace the current
process, suspend the current process until the spawned process terminates, run asynchronously with the
calling process or run simultaneously and detach as a background process.

For a UNIX application to change the executable file run in the child process, the child process must
explicitly call an exec function to overwrite the executable file with a new application. The combination
of fork and exec is similar to, but not the same as, CreateProcess.

The example below shows a UNIX application that forks to create a child process and then runs the
UNIX ps command by using execlp.

Creating a process in UNIX using fork and exec

#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>

int main()

Page 3 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

{
 pid_t pid;

 printf("Running ps with fork and execlp\n");
 pid = fork();
 switch(pid)
 {
 case -1:
 perror("fork failed");
 exit(1);
 case 0:
 if (execlp("ps", NULL) < 0) {
 perror("execlp failed");
 exit(1);
 }
 break;
 default:
 break;
 }
 printf("Done.\n");
 exit(0);
}

You can port this code to Windows using the Win32 CreateProcess function discussed earlier, or by
using a spawn function from the standard C runtime library. In both cases, the old and new processes
run parallel, asynchronously.

Creating a process in Windows using CreateProcess

#include <windows.h>
#include <process.h>
#include <stdio.h>

void main()
{
 STARTUPINFO si;
 PROCESS_INFORMATION pi;

 GetStartupInfo(&si);

 printf("Running Notepad with CreateProcess\n");
 CreateProcess(NULL, "notepad", // Name of app to launch
 NULL, // Default process security attributes
 NULL, // Default thread security attributes
 FALSE, // Don't inherit handles from the parent
 0, // Normal priority
 NULL, // Use the same environment as the parent
 NULL, // Launch in the current directory
 &si, // Startup Information
 &pi); // Process information stored upon return

 printf("Done.\n");
 exit(0);
}

The arguments supported by CreateProcess (shown in the preceding example) give you a considerable
degree of control over the newly created process. This contrasts with the spawn functions, which do not
provide options to set process priority, security attributes, or the debug status.

Page 4 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The next example shows a port of the same code using the _spawnlp function.

Creating a process in Windows using spawn

#include <windows.h>
#include <process.h>
#include <stdio.h>

void main()
{
 printf("Running Notepad with spawnlp\n");
 _spawnlp(_P_NOWAIT, "notepad", "notepad", NULL);

 printf("Done.\n");
 exit(0);
}

Running either of the above examples yields a console window similar to that shown here:

Figure 1. Output from spawn example code

Replacing a Process Image (exec)

A UNIX application replaces the executing image with that of another application by using one of the
exec functions. As mentioned previously, a fork followed by an exec is similar to CreateProcess.

Windows supports the six POSIX variants of the exec function plus two additional ones (execlpe and
execvpe). The function signatures are identical, and come as part of the standard C runtime. Porting
UNIX code that uses exec to Win32 is easy to understand. The following is a simple UNIX example
showing the use of the execlp function.

Note For more information on exec support on Win32, see the standard C runtime library
documentation that comes with the Microsoft Visual Studio® development system.

Replacing a process image in UNIX using exec

Page 5 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

#include <unistd.h>
#include <stdio.h>

int main()
{
 printf("Running ps with execlp\n");
 execlp("ps", "ps", "-l", 0);
 printf("Done.\n");
 exit(0);
}

The preceding example compiles and runs on Windows with only minor modifications. It does,
however, require an executable file called ps.exe to be available (one is included with the Interix
product).

The <unistd.h> include file is not a valid header file when using Windows. To use this example when
using Windows, you need to change the header file to <process.h>. Doing so allows you to compile,
link, and run this simple application.

Waiting for a Spawned Process

In the preceding section, the example showed how you can create an asynchronous process where the
parent and child processes execute simultaneously. No synchronization was performed. This section
describes how to modify the previous example to include functionality that enables the parent process to
wait for the child process to complete or terminate before continuing.

To accomplish this in UNIX, a developer would use one of the wait functions to suspend the parent
process until the child process terminates. The same semantics are available when using Windows. The
functions used are different, but the results are the same.

When you view the examples, keep in mind that this is not an exhaustive comparison between the two
platforms. A very simple scenario is described, but if you need to expand the scenario to include waiting
for multiple child processes, the spawn example does not map adequately as it does not include support
for this functionality. In this case, you need to consider the CreateProcess approach and
WaitForMultipleObjects.

To see the code for this example, see Appendix G: Waiting for a Spawned Process.

Process vs. Threads

In the next example, the UNIX code is forking a process, but not executing a separate runtime image.
This creates a separate execution path within the application. When using Windows, this is achieved by
using threads rather than processes. If your UNIX application creates separate threads of execution in
this manner, you should use the Win32 API CreateThread.

The process of creating threads is covered in the next section, Threads.

UNIX code with forking executable

#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>

Page 6 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

int main()
{
 pid_t pid;
 int n;

 printf("fork program started\n");
 pid = fork();
 switch(pid)
 {
 case -1:
 perror("fork failed");
 exit(1);
 case 0:
 puts("I'm the child");
 break;
 default:
 puts("I'm the parent");
 break;
 }
 exit(0);
}

Managing Process Resource Limits

Developers often want to create processes that run with a specific set of resource restrictions. In some
cases, they may impose limitations for the purposes of stress testing or forced failure condition testing.
In other cases, however, the limitations may be imposed to restrict runaway processes from using up all
available memory, CPU cycles, or disk space.

In UNIX, the getrlimit function retrieves resource limits for a process, the getrusage function retrieves
current usage, and setrlimit function sets new limits. The common limit names and their meanings are
described in Table 1:

Table 1. Common limit names and definitions

Limit Description
RLIMIT_CORE The maximum size, in bytes, of a core file created by this

process. If the core file is larger than RLIMIT_CORE, the
write is terminated at this value. If the limit is set to 0,
then no core files are created.

RLIMIT_CPU The maximum time, in seconds, of CPU time a process
can use. If the process exceeds this time, the system
generates SIGXCPU for the process.

RLIMIT_DATA Maximum size, in bytes, of a process's data segment. If
the data segment exceeds this value, the functions brk,
malloc, and sbrk will fail.

RLIMIT_FSIZE The maximum size, in bytes, of a file created by a
process. If the limit is 0, the process cannot create a file.
If a write or truncation call exceeds the limit, further
attempts will fail.

RLIMIT_NOFILE The highest possible value for a file descriptor, plus one.
This limits the number of file descriptors a process may

Page 7 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Windows uses job objects to set job limits (rather than process limits). Unlike UNIX, Windows job
objects do not have File input/output (I/O) source restrictions. If you require File I/O limits in your
application, you need to create your own code to handle this.

Windows job objects

Windows supports the concept of job objects, which allows you to group one or more processes into a
single entity. Once a job object has been populated with the desired processes, the entire group can be
manipulated for various purposes ranging from termination to imposing resource restrictions.

The restrictions that job objects allow you to enforce are described in Table 2:

Table 2. Job objects

allocate. If more than RLIMIT_NOFILE files are
allocated, functions allocating new file descriptors may
fail with the error EMFILE.

RLIMIT_STACK The maximum size, in bytes, of a process's stack. The
stack won't automatically exceed this limit; if a process
tries to exceed the limit, the system generates SIGSEGV
for the process.

RLIMIT_AS Maximum size, in bytes, of a process's total available
memory. If this limit is exceeded, the memory functions
brk, malloc, mmap, and sbrk will fail with errno set to
ENOMEM, and automatic stack growth will fail as
described for RLIMIT_STACK.

Member Description Notes
PerProcessUser-
TimeLimit

Specifies the maximum
user-mode time allotted
to each process (in 100 ns
intervals).

The system automatically terminates any process
that uses more than its allotted time. To set this
limit, specify the JOB_OBJECT_LIMIT_
PROCESS_TIME flag in the LimitFlags
member.

PerJobUser-TimeLimit Specifies how much more
user-mode time the
processes in this job can
use (in 100 ns intervals).

By default, the system automatically terminates
all processes when this time limit is reached.
You can change this value periodically as the job
runs. To set this limit, specify the
JOB_OBJECT_LIMIT_JOB_TIME flag in the
LimitFlags member.

LimitFlags Specifies which
restrictions to apply to the
job.

See the job objects API reference for more
information.

MinimumWorkingSetSize/
MaximumWorkingSetSize

Specifies the minimum
and maximum working
set size for each process
(not for all processes
within the job).

Normally, a process's working set can grow
above its maximum; setting
MaximumWorkingSetSize forces a hard limit.
Once the process's working set reaches this limit,
the process pages against itself. Calls to
SetProcessWorkingSetSize by an individual
process are ignored unless the process is just
trying to empty its working set. To set this limit,

Page 8 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

As you may have observed by reviewing the table for setrlimit and job objects, the restrictions offered
by job objects are comparable except in one major area: File I/O.

Limiting file I/O when using Windows

When a process is created in UNIX, the Process Control Block (PCB) in kernel space contains an array
of limits that is initialized with default values. In the case of the RLIMIT_FSIZE limit, the write
procedures in the kernel are aware of the limit structure in the PCB, and these functions make checks to
enforce the limits. The Windows operating system does not implement similar limits on files. To solve
this problem, you must write your own solution and build it into your application.

This section presents a solution that you could use in your application. This solution emulates the UNIX
file resource limits with:

l An array of limits held as a static variable.

This is similar to how some of the C runtime functions use static variables.

l Our own versions of the UNIX functions getrlimit() and setrlimit().

These functions manipulate the limit array.

specify the JOB_OBJECT_
LIMIT_WORKINGSET flag in the LimitFlags
member.

ActiveProcessLimit Specifies the maximum
number of processes that
can run concurrently in
the job.

Any attempt to go over this limit causes the new
process to be terminated with a "not enough
quota" error. To set this limit, specify the
JOB_OBJECT_ LIMIT_ACTIVE_PROCESS
flag in the LimitFlags member.

Affinity Specifies the subset of the
CPU(s) that can run the
processes.

Individual processes can limit this even further.
To set this limit, specify the JOB_OBJECT_
LIMIT_AFFINITY flag in the LimitFlags
member.

PriorityClass Specifies the priority
class that all processes
use.

If a process calls SetPriorityClass, the call will
return successfully even though it actually fails.
If the process calls GetPriorityClass, the
function returns what the process has set the
priority class to even though this might not be
process's actual priority class. In addition,
SetThreadPriority fails to raise threads above
normal priority but can be used to lower a
thread's priority. To set this limit, specify the
JOB_OBJECT_LIMIT_PRIORITY_CLASS
flag in the LimitFlags member.

SchedulingClass Specifies a relative time
quantum difference
assigned to threads in the
job.

Value can be from 0 to 9 inclusive; 5 is the
default. See the text after this table for more
information. To set this limit, specify the
JOB_OBJECT_LIMIT_SCHEDULING_CLASS
flag in the LimitFlags member.

Page 9 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l Wrappers for each of the disk write functions.

These wrappers are resource limit aware.

This solution is implemented as three files. Two of the files, resource.h and resource.c, implement the
getrlimit(), setrlimit(), rfwrite() and _rwrite() functions. Only fwrite() and _write() are wrapped since
they are the most common disk write functions encountered in the UNIX world. The third file is rlimit.c
which is a very simple test program used to confirm that rfwrite() will fail when the limit was reached.

For more information, see Appendix B: Limiting File I/O.

Process Accounting

The Win32 API has several functions for gathering process accounting information:

l GetProcessShutdownParameters
l GetProcessTimes
l GetProcessWorkingSetSize
l SetPriorityClass
l SetProcessShutdownParameters
l SetProcessWorkingSetSize

Alternatively, a better method of obtaining process information is through the Windows Management
Instrumentation (WMI) API.

For more information on WMI, see Windows Management Instrumentation (WMI) Tools.

Signals and Signal Handling

The UNIX operating system supports a wide range of signals. UNIX signals are software interrupts that
catch or indicate different types of events. Windows on the other hand supports only a small set of
signals that is restricted to exception events only. Consequently, converting UNIX code to Win32
requires the use of new techniques replacing the use of some UNIX signals.

The Windows signal implementation is limited to the following signals (Table 3):

Table 3. Windows signals

Note When a Ctrl+C interrupt occurs, Win32 operating systems generate a new thread to
handle the interrupt. This can cause a single-thread application, such as one ported from
UNIX, to become multithreaded, potentially resulting in unexpected behavior.

Signal Meaning
SIGABRT Abnormal termination
SIGFPE Floating-point error
SIGILL Illegal instruction
SIGINT CTRL+C signal
SIGSEGV Illegal storage access
SIGTERM Termination request

Page 10 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

When an application uses other signals not supported in Windows, you have two choices:

l Use additional libraries that provide required signals, such as those provided by Microsoft
Windows Services for UNIX.

l Use a comparable Windows mechanism, such as Windows Messages.

This section focuses on the Windows mechanisms that you can use to replace the use of some UNIX
signals. Table 4 shows the recommended mechanisms that you can use to replace common UNIX
signals. There are three main mechanisms:

l Native signals
l Event objects
l Messages

Table 4. UNIX signals and replacement mechanisms

Note Only POSIX signals are considered in this table (that is, Seventh Edition, System V,
and BSD signals are not).

This section discusses how you can use the three mechanisms in Table 4 to convert the parts of your
code that use signals into the Windows environment.

Another mechanism that can be useful when converting some UNIX uses of signals to Windows is event
kernel objects. For more information on these objects, see the CreateEvent example in the Logging
System Messages section later in this chapter.

Signal name Description Link to reference material
SIGABRT Abnormal termination SIGABRT
SIGALRM Time-out alarm SetTimer–WM_TIMER -

CreateWaitableTimer
SIGCHLD Change in status of child WaitForSingleObject
SIGCONT Continue stopped process WaitForSingleObject
SIGFPE Floating point exception SIGFPE
SIGHUP Hangup NA
SIGILL Illegal hardware instruction SIGILL
SIGINT Terminal interrupt character WM_CHAR
SIGKILL Termination WM_QUIT
SIGPIPE Write to pipe with no readers WaitForSingleObject
SIGQUIT Terminal Quit character WM_CHAR
SIGSEGV Invalid memory reference SIGSEGV
SIGSTOP Stop process WaitForSingleObject
SIGTERM Termination SIGTERM
SIGTSTP Terminal Stop character WM_CHAR
SIGTTIN Background read from control tty NA
SIGTTOU Background write to control tty NA
SIGUSR1 User defined signal SendMessage–WM_APP
SIGUSR2 User defined signal SendMessage–WM_APP

Page 11 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Using Native Signals in Windows

In the following example, the simple case of catching SIGINT to detect Ctrl-C is demonstrated. As you
can see from the two source listings, support for handling native signals in UNIX and Win32 is very
similar.

Managing signals in UNIX

#include <unistd.h>
#include <stdio.h>
#include <signal.h>

/* The intrpt function reacts to the signal passed in the parameter
signum.
 This function is called when a signal occurs.
 A message is output, then the signal handling for SIGINT is reset
 (by default generated by pressing CTRL-C) back to the default
behavior.
*/
void intrpt(int signum)
{
 printf("I got signal %d\n", signum);
 (void) signal(SIGINT, SIG_DFL);
}

/* main intercepts the SIGINT signal generated when Ctrl-C is input.
 Otherwise, sits in an infinite loop, printing a message once a second.
*/
int main()
{
 (void) signal(SIGINT, intrpt);

 while(1) {
 printf("Hello World!\n");
 sleep(1);
 }
}

Managing signals in Windows

#include <windows.h>
#include <signal.h>
#include <stdio.h>

void intrpt(int signum)
{
 printf("I got signal %d\n", signum);
 (void) signal(SIGINT, SIG_DFL);
}

/* main intercepts the SIGINT signal generated when Ctrl-C is input.
 Otherwise, sits in an infinite loop, printing a message once a second.
*/

void main()
{
 (void) signal(SIGINT, intrpt);

Page 12 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 while(1) {
 printf("Hello World!\n");
 Sleep(1000);
 }
}

Note By default, signal terminates the calling program with exit code 3, regardless of the
value of sig. For more information, see the signal topic in the Visual C++ Run Time Library
Reference.

With the exception of requiring an additional header file, and the different signature of the sleep
function, these two examples are identical. Unfortunately, this is the extent of the similarities in signal
handling between the two platforms.

Replacing UNIX Signals Within Windows

UNIX uses signals to send alerts to processes when specific actions occur. A UNIX application would
use the kill function to activate signals internally. As discussed earlier, Win32 provides only limited
support for signals. As a result, you have to rewrite your code to use another form of event notification
in Win32.

The following example illustrates how you would convert UNIX code to Windows Messages or Event
Objects. It shows a simple main that forks a child process, which issues the SIGALRM signal. The
parent process catches the alarm and outputs a message when it is received.

Using the SIGALRM signal in UNIX

#include <unistd.h>
#include <stdio.h>
#include <signal.h>

static int alarm_fired = 0;

/* The alrm_bell function simulates an alarm clock. */
void alrm_bell(int sig)
{
 alarm_fired = 1;
}

int main()
{
 int pid;

/* Child process waits for 5 sec's before sending SIGALRM to its parent. */
 printf("alarm application starting\n");
 if((pid = fork()) == 0) {
 sleep(5);
 kill(getppid(), SIGALRM);
 exit(0);
 }

/* Parent process arranges to catch SIGALRM with a call to signal
 and then waits for the child process to send SIGALRM. */
 printf("waiting for alarm\n");

Page 13 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 (void) signal(SIGALRM, alrm_bell);
 pause();
 if (alarm_fired)
 printf("Ring...Ring!\n");

 printf("alarm application done\n");
 exit(0);
}

Replacing UNIX Signals with Windows Messages

In the first Win32 example below, a form of Microsoft Windows Messages is used to signal the parent
process. In the example, the SetTimer function is used to signal the parent process that an alarm has
been activated. While code could have been created to do the timing, using the SetTimer function
greatly simplifies this example.

Another advantage of using SetTimer is that the callback function is invoked in the same thread that
calls SetTimer. No synchronization is necessary.

If the requirements are simple, consider using a thread to act as a timer thread, which simply calls Sleep
to create the desired delay. At the end of the delay, a call is made to a timer callback function. The
problem with this approach is that the callback function is called from a different thread than your
primary thread. If the callback function requires resources that are thread specific, you will need to use
one of the appropriate synchronization mechanisms discussed later in the "Threads" section.

Additional code has been added to the example so that an application using this code can catch any
standard Windows message as well as application and user defined messages. You can use these
messages to engineer solutions to other signals that are not directly supported by the native signal
implementation in Win32.

Replacing SIGALRM using Windows messages

#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

static int alarm_fired = 0;

/* The alrm_bell function simulates an alarm clock. */
VOID CALLBACK alrm_bell(HWND hwnd, UINT uMsg, UINT idEvent, DWORD
dwTime)
{
 alarm_fired = 1;
 printf("Ring...Ring!\n");
}

void main()
{
 printf("alarm application starting\n");

/* Set up a 5 second timer which calls alrm_bell */
 SetTimer(0, 0, 5000, (TIMERPROC)alrm_bell);

 printf("waiting for alarm\n");

Page 14 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 MSG msg = { 0, 0, 0, 0 };

/* Get the message, & dispatch. This causes alrm_bell to be
invoked. */
 while(!alarm_fired)
 if (GetMessage(&msg, 0, 0, 0)) {
 if (msg.message == WM_TIMER)
 printf("WM_TIMER\n");
 DispatchMessage(&msg);
 }
 printf("alarm application done\n");
 exit(0);
}

Notice in this example that the WM_TIMER message is issued and captured by the GetMessage
function. If you remove the call to DispatchMessage, the alrm_bell function would never be called, but
the WM_TIMER message would be received. With this simple application, you can capture a variety of
Windows messages. Moreover, if you want to trigger the callback function before the specified time,
you can use the PostMessage(WM_TIMER) call. This is analogous to using the kill function to send a
signal in UNIX.

Replacing UNIX Signals with Windows Event Objects

Some events that UNIX handles through signals are represented in Win32 as objects. Functions are
available to integrate these event objects. An example of these functions is WaitForSingleObject.

In the example code below, a timer object is used to signal when a timed interval has elapsed. Again,
this example provides the same functionality as the UNIX SIGALRM example above.

Note While this illustration encompasses the process in a single thread, this is not a
requirement. The timer object can be tested and waited for in other threads if necessary.

Replacing SIGALRM using event objects

#define _WIN32_WINNT 0X0500

#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

void main()
{
 HANDLE hTimer = NULL;
 LARGE_INTEGER liDueTime;

 liDueTime.QuadPart = -50000000;

 printf("alarm application starting\n");

// Set up a 5 second timer object
 hTimer = CreateWaitableTimer(NULL, TRUE, "WaitableTimer");
 SetWaitableTimer(hTimer, &liDueTime, 0, NULL, NULL, 0);

// Now wait for the alarm
 printf("waiting for alarm\n");

Page 15 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

// Wait for the timer object
 WaitForSingleObject(hTimer, INFINITE);
 printf("Ring...Ring!\n");
 printf("alarm application done\n");
 exit(0);
}

Porting the Sigaction Call

Win32 does not support sigaction. The UNIX example below shows how sigaction is typically used in a
UNIX application. In this example, the handler for the SIGALRM signal has been set. How this code
can be converted to use Windows Messages was shown earlier. You could also use Windows Messages
here if you prefer.

Note To terminate this application from the keyboard, press CTRL+\.

#include <unistd.h>
#include <stdio.h>
#include <signal.h>

void intrpt(int signum)
{
 printf("I got signal %d\n", signum);
}

int main()
{
 struct sigaction act;

 act.sa_handler = intrpt;
 sigemptyset(&act.sa_mask);
 act.sa_flags = 0;

 sigaction(SIGINT, &act, 0);

 while(1) {
 printf("Hello World!\n");
 sleep(1);
 }
}

Threads

A thread is an independent path of execution in a process that shares the address space, code, and global
data of the process. Time slices are allocated to each thread based on priority, and consist of an
independent set of registers, stack, I/O handles, and message queue. Threads can usually run on separate
processors on a multiprocessor computer. Win32 enables you to assign threads to a specific processor on
a multiprocessor hardware platform.

An application using multiple processes usually has to implement some form of interprocess
communication (IPC). This can result in significant overhead, and possibly a communication bottleneck.
In contrast, threads share the process data between them, and interthread communication can be much
faster. The problem with threads sharing data is that this can lead to data access conflicts between
multiple threads. You can address these conflicts using synchronization techniques, such as semaphores

Page 16 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

and mutexes.

In UNIX, developers implement threads by using the POSIX pthread functions. In Win32, developers
can implement UNIX threading by using the Win32 API thread management functions. The
functionality and operation of threads in UNIX and Win32 is very similar; however, the function calls
and syntax are very different.

The following are some similarities between UNIX and Windows:

l Every thread must have an entry point. The name of the entry point is entirely up to you so long as
the signature is unique and the linker can adequately resolve any ambiguity.

l Each thread is passed a single parameter when it is created. The contents of this parameter are
entirely up to the developer and have no meaning to the operating system.

l A thread function must return a value.
l A thread function needs to use local parameters and variables as much as possible. When you use

global variables or shared resources, threads must use some form of synchronization to avoid
potentially clobbering and corrupting data.

This section looks at how you should go about converting UNIX threaded applications into Win32
thread applications. As you know from the preceding section about processes, you may also have
decided to convert some of your application's use of UNIX processes into threads.

Note More information about programming with threads in Win32 can be found on the
MSDN Web site at Multithreading: Programming
Tips_core_multithreading.3a_.programming_tips

For details on thread management functions in the Win32 API, see the Win32 API reference
in Visual Studio or MSDN.

Creating a Thread

When creating a thread in UNIX, use the pthread_create function. This function has three arguments: a
pointer to a data structure that describes the thread, an argument specifying the thread's attributes
(usually set to NULL indicating default settings) and the function the thread will run. The thread finishes
execution with a pthread_exit, where in this case, it returns a string. The process can wait for the thread
to complete using the function pthread_join.

This simple UNIX example below creates a thread and waits for it to finish.

Creating a single thread in UNIX

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

char message[] = "Hello World";

void *thread_function(void *arg) {
 printf("thread_function started. Arg was %s\n", (char *)arg);
 sleep(3);
 strcpy(message, "Bye!");

Page 17 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 pthread_exit("See Ya");
}

int main() {
 int res;
 pthread_t a_thread;
 void *thread_result;
 res = pthread_create(&a_thread, NULL, thread_function, (void
*)message);
 if (res != 0) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }
 printf("Waiting for thread to finish...\n");
 res = pthread_join(a_thread, &thread_result);
 if (res != 0) {
 perror("Thread join failed");
 exit(EXIT_FAILURE);
 }
 printf("Thread joined, it returned %s\n", (char *)thread_result);
 printf("Message is now %s\n", message);
 exit(EXIT_SUCCESS);
}

In Win32, threads are created using the CreateThread function. CreateThread requires:

l The size of the thread's stack
l The security attributes of the thread
l The address at which to begin execution of a procedure
l An optional 32 bit value that is passed to the thread's procedure
l Flags that permit the thread priority to be set
l An address to store the system-wide unique thread identifier

Once a thread is created, the thread identifier can be used to manage the thread until it has terminated.
The next example demonstrates how you should use CreateThread to create a single thread.

Creating a single thread in Windows

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>

char message[] = "Hello World";

DWORD WINAPI thread_function(PVOID arg) {
 printf("thread_function started. Arg was %s\n", (char *)arg);
 Sleep(3000);
 strcpy(message, "Bye!");
 return 100;
}

void main() {
 HANDLE a_thread;
 DWORD a_threadId;
 DWORD thread_result;

 // Create a new thread.

Page 18 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 a_thread = CreateThread(NULL, 0, thread_function, (PVOID)message,
0, &a_threadId);

 if (a_thread == NULL) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }
 printf("Waiting for thread to finish...\n");
 if (WaitForSingleObject(a_thread, INFINITE) != WAIT_OBJECT_0) {
 perror("Thread join failed");
 exit(EXIT_FAILURE);
 }

 // Retrieve the code returned by the thread.
 GetExitCodeThread(a_thread, &thread_result);

 printf("Thread joined, it returned %d\n", thread_result);
 printf("Message is now %s\n", message);
 exit(EXIT_SUCCESS);
}

The UNIX and Win32 examples have roughly equivalent semantics. There are only two notable
differences:

l The thread function in the Win32 code cannot return a string value. Developers must use some
other means to convey the string message back to the parent (for example, returning an index into
a string array).

l The Win32 version of the thread function simply returns a DWORD value rather than calling a
function to terminate the thread. ExitThread could have been called, but this is not necessary
because ExitThread is called automatically upon the return from the thread procedure.
TerminateThread could also be called, but this isn't necessary, nor is it recommended. This is
because TerminateThread causes the thread to exit unexpectedly. The thread then has no chance to
execute any user-mode code and its initial stack in not deallocated. Furthermore, any DLLs
attached to the thread are not notified that the thread is terminating. For more information, see
Process and Thread Functions.

The two solutions have vastly different syntaxes. Win32 uses a different set of API calls to manage
threads. As a result, the relevant data elements and arguments are considerably different.

Canceling a Thread

The details of terminating threads differ significantly between UNIX and Win32. While both
environments allow threads to block termination entirely, UNIX offers additional facilities that allow a
thread to specify if it is to be terminated immediately or deferred until it reaches a safe recovery point.
Moreover, UNIX provides a facility known as cancellation cleanup handlers, which a thread can push
and pop from a stack that is invoked in a last-in-first-out order when the thread is terminated. These
cleanup handlers are coded to clean up and restore any resources before the thread is actually
terminated.

The Win32 API allows you to terminate a thread asynchronously. Unlike UNIX, in Win32 code you
cannot create cleanup handlers and it is not possible for a thread to defer from being terminated.
Therefore, it is recommended that you design your code so that threads terminate by returning an exit
code and so that threads cannot be terminated forcibly. To do this, you should design your thread code to

Page 19 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

accept some form of message or event to signal that they should be terminated. Based on this
notification, the thread logic can elect to execute cleanup-handling code and return normally.

To prevent a thread from being terminated, you should remove the security attributes for
THREAD_TERMINATE from the thread object.

While forcing a thread to end by using TerminateThread is not recommended, for completeness, the
following example shows how you could convert UNIX code that cancels a thread into Win32 code that
cancels a thread using this method.

Canceling a thread in UNIX

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *thread_function(void *arg) {
 int i, res;
 res = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
 if (res != 0) {
 perror("Thread pthread_setcancelstate failed");
 exit(EXIT_FAILURE);
 }
 res = pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);
 if (res != 0) {
 perror("Thread pthread_setcanceltype failed");
 exit(EXIT_FAILURE);
 }
 printf("thread_function is running\n");
 for(i = 0; i < 10; i++) {
 printf("Thread is running (%d)...\n", i);
 sleep(1);
 }
 pthread_exit(0);
}

int main() {
 int res;
 pthread_t a_thread;
 void *thread_result;

 res = pthread_create(&a_thread, NULL, thread_function, NULL);
 if (res != 0) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }
 sleep(3);
 printf("Cancelling thread...\n");
 res = pthread_cancel(a_thread);
 if (res != 0) {
 perror("Thread cancellation failed");
 exit(EXIT_FAILURE);
 }
 printf("Waiting for thread to finish...\n");
 res = pthread_join(a_thread, &thread_result);
 if (res != 0) {
 perror("Thread join failed");

Page 20 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 exit(EXIT_FAILURE);
 }
 exit(EXIT_SUCCESS);
}

Canceling a thread in Windows

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>

DWORD WINAPI thread_function(PVOID arg) {
 printf("thread_function is running. Argument was %s\n", (char
*)arg);
 for(int i = 0; i < 10; i++) {
 printf("Thread is running (%d)...\n", i);
 Sleep(1000);
 }
 return 100;
}

void main() {
 HANDLE a_thread;
 DWORD thread_result;

 // Create a new thread.
 a_thread = CreateThread(NULL, 0, thread_function, (PVOID)NULL, 0,
NULL);

 if (a_thread == NULL) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }

 Sleep(3000);
 printf("Cancelling thread...\n");
 if (!TerminateThread(a_thread, 0)) {
 perror("Thread cancellation failed");
 exit(EXIT_FAILURE);
 }

 printf("Waiting for thread to finish...\n");
 WaitForSingleObject(a_thread, INFINITE);
 GetExitCodeThread(a_thread, &thread_result);

 exit(EXIT_SUCCESS);
}

When you compare the UNIX and Win32 examples, you can see that in the Win32 implementation the
setting for the deferred termination is absent. This is because deferring termination is not supported in
Win32. TerminateThread is not immediate and it is not predictable. The termination resulting from a
TerminateThread call can occur at any point during the thread execution. In contrast, UNIX threads
tagged as deferred can terminate when a safe cancellation point is reached.

If you need to match the UNIX behavior in your Win32 application exactly you must create your own
cancellation code, and thereby prevent the thread from being forcibly terminated.

Page 21 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Thread Synchronization

When you have more than one thread executing simultaneously, you have to take the initiative to protect
shared resources. For example, if your thread increments a variable, you cannot predict the result as the
variable may have been modified by another thread before or after the increment. The reason that you
cannot predict the result is that the order in which threads have access to a shared resource is
indeterminate.

The following example illustrates code that is, in principle, indeterminate.

Note This is a very simple example and on most computers the result would always be the
same, but the important point to note is that this is not guaranteed.

The main thread in the below example is represented by the parent. It generates a "P", and the child or
secondary thread outputs a "T". A UNIX example and a Windows example are shown.

Multiple non-synchronized threads in UNIX

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *thread_function(void *arg) {
 int count2;

 printf("thread_function is running. Argument was: %s\n", (char
*)arg);
 for (count2 = 0; count2 < 10; count2++) {
 sleep(1);
 printf("T");
 }
 sleep(3);
}

char message[] = "Hello I'm a Thread";

int main() {
 int count1, res;
 pthread_t a_thread;
 void *thread_result;

 res = pthread_create(&a_thread, NULL, thread_function, (void
*)message);
 if (res != 0) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }
 printf("entering loop\n");
 for (count1 = 0; count1 < 10; count1++) {
 sleep(1);
 printf("P");
 }

 printf("\nWaiting for thread to finish...\n");
 res = pthread_join(a_thread, &thread_result);

Page 22 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 if (res != 0) {
 perror("Thread join failed");
 exit(EXIT_FAILURE);
 }
 printf("\nThread joined\n");
 exit(EXIT_SUCCESS);
}

Multiple non-synchronized threads in Windows

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>

DWORD WINAPI thread_function(PVOID arg) {
 int count2;

 printf("thread_function is running. Argument was: %s\n", (char
*)arg);
 for (count2 = 0; count2 < 10; count2++) {
 Sleep(1000);
 printf("T");
 }

 Sleep(3000);
 return 0;
}

char message[] = "Hello I'm a Thread";

void main() {
 HANDLE a_thread;
 DWORD a_threadId;
 DWORD thread_result;
 int count1;

 // Create a new thread.
 a_thread = CreateThread(NULL, 0, thread_function, (PVOID)message,
0, &a_threadId);

 if (a_thread == NULL) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }

 printf("entering loop\n");
 for (count1 = 0; count1 < 10; count1++) {
 Sleep(1000);
 printf("P");
 }

 printf("\nWaiting for thread to finish...\n");
 if (WaitForSingleObject(a_thread, INFINITE) != WAIT_OBJECT_0) {
 perror("Thread join failed");
 exit(EXIT_FAILURE);
 }

 // Retrieve the code returned by the thread.
 GetExitCodeThread(a_thread, &thread_result);

Page 23 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 printf("\nThread joined\n");
 exit(EXIT_SUCCESS);
}

No actual synchronization between these two threads is being performed, and each thread uses the same,
shared variable. If the threads were running serially, you'd see output like the following:

MOV EAX, 2 ; Thread 1: Move 2 into a register.
MOV [run_now], EAX ; Thread 1: Store 2 in run_now.

MOV EAX, 1 ; Thread 2: Move 1 into a register.
MOV [run_now], EAX ; Thread 2: Store 1 in run_now.

However, since there is no guarantee of the order that the threads will be executed in, you could have the
following output:

MOV EAX, 2 ; Thread 1: Move 2 into a register.
MOV EAX, 1 ; Thread 2: Move 1 into a register.
MOV [run_now], EAX ; Thread 1: Store 2 in run_now.

MOV [run_now], EAX ; Thread 2: Store 1 in run_now.

It is not possible to predict the output that you will see from these examples. In most applications,
unpredictable results are an undesirable feature. Consequently, it is important that you take great care in
controlling access to shared resources in threaded code. UNIX and Windows provide mechanisms for
controlling resource access. These mechanisms are referred to as synchronization techniques, which are
discussed in the next few sections.

Interlocked exchange

A simple form of synchronization is to use what is known as an interlocked exchange. An interlocked
exchange performs a single operation that cannot be preempted. The threads of different processes can
only use this mechanism if the variable is in shared memory. The variable pointed to by the target
parameter must be aligned on a 32-bit boundary; otherwise, this function will fail on multiprocessor x86
systems. Since this is not the case in the example, it does not help much, but it does illustrate the use of
the InterlockedExchange functions.

Rewriting the previous Win32 example by using InterlockedExchange results in the following code:

Thread synchronization using interlocked exchange in Windows

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>

LONG new_value = 1;
char message[] = "Hello I'm a Thread";

DWORD WINAPI thread_function(PVOID arg) {
 int count2;

 printf("thread_function is running. Argument was: %s\n", (char
*)arg);

Page 24 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 for (count2 = 0; count2 < 10; count2++) {
 Sleep(1000);
 printf("(T-%d)", new_value);

InterlockedExchange(&new_value, 1);
 }

 Sleep(3000);
 return 0;
}

void main() {
 HANDLE a_thread;
 DWORD a_threadId;
 DWORD thread_result;
 int count1;

// Create a new thread.
 a_thread = CreateThread(NULL, 0, thread_function, (PVOID)message,
0, &a_threadId);

 if (a_thread == NULL) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }

 printf("entering loop\n");
 for (count1 = 0; count1 < 10; count1++) {
 Sleep(1000);
 printf("(P-%d)", new_value);

InterlockedExchange(&new_value, 2);
 }

 printf("\nWaiting for thread to finish...\n");
 if (WaitForSingleObject(a_thread, INFINITE) != WAIT_OBJECT_0) {
 perror("Thread join failed");
 exit(EXIT_FAILURE);
 }

// Retrieve the code returned by the thread.
 GetExitCodeThread(a_thread, &thread_result);

 printf("\nThread joined\n");
 exit(EXIT_SUCCESS);
}

Synchronization with SpinLocks

In the previous example, as noted, you still have no synchronization between the two threads. The
output may still be out of order. One simple mechanism that offers synchronization would be to
implement a spin lock. To accomplish this, a variant of the Interlocked function called
InterlockedCompareExchange is used.

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>

LONG run_now = 1;
char message[] = "Hello I'm a Thread";

Page 25 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

DWORD WINAPI thread_function(PVOID arg) {
 int count2;

 printf("thread_function is running. Argument was: %s\n", (char
*)arg);
 for (count2 = 0; count2 < 10; count2++) {
 if (InterlockedCompareExchange(&run_now, 1, 2) == 2)
 printf("T-2");
 else
 Sleep(1000);
 }
 Sleep(3000);
 return 0;
}

void main() {
 HANDLE a_thread;
 DWORD a_threadId;
 DWORD thread_result;
 int count1;

// Create a new thread.
 a_thread = CreateThread(NULL, 0, thread_function, (PVOID)message,
0, &a_threadId);

 if (a_thread == NULL) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }

 printf("entering loop\n");
 for (count1 = 0; count1 < 10; count1++) {
 if (InterlockedCompareExchange(&run_now, 2, 1) == 1)
 printf("P-1");
 else
 Sleep(1000);
 }

 printf("\nWaiting for thread to finish...\n");
 if (WaitForSingleObject(a_thread, INFINITE) != WAIT_OBJECT_0) {
 perror("Thread join failed");
 exit(EXIT_FAILURE);
 }

// Retrieve the code returned by the thread.
 GetExitCodeThread(a_thread, &thread_result);
 printf("\nThread joined\n");
 exit(EXIT_SUCCESS);
}

Spinlocks work well for synchronizing access to a single object, but most applications are not this
simple. Moreover, using spinlocks is not the most efficient means to control access to a shared resource.
Running a While loop in user mode while waiting for a global value to change wastes CPU cycles
unnecessarily. A mechanism is needed that allows the thread to not waste CPU time while waiting to
access a shared resource.

When a thread requires access to a shared resource (for example a shared memory object), it must either

Page 26 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

be notified or scheduled to resume execution. To accomplish this, a thread must call an operating system
function, passing it parameters that indicate what the thread is waiting for. If the operating system
detects that the resource is available, the function returns and the thread resumes.

If the resource is unavailable, the system places the thread in a wait state, making the thread not
schedulable. This prevents the thread from wasting any CPU time. When a thread is waiting, the system
permits the exchange of information between the thread and the resource. The operating system tracks
the resources that a thread needs and automatically resumes the thread when the resource becomes
available. The thread's execution is synchronized with the availability of the resource.

Mechanisms that prevent the thread from wasting CPU time include critical sections (for example, the
EnterCriticalSection function waits for ownership of the specified critical section object, and returns
when the calling thread has been granted ownership), semaphores and mutexes. Windows includes all
three of these mechanisms, and UNIX provides both semaphores and mutexes. These three mechanisms
are described in the following sections.

Synchronization with critical sections

Another mechanism for solving this simple scenario is to use a critical section. A critical section is
similar to InterlockedExchange except that you have the ability to define the logic that takes place as
an atomic operation.

What follows is the simple example from the previous section with the InterlockedExchange replaced
with critical sections. On multiprocessor systems, it's best to use
InitializeCriticalSectionAndSpinCount, instead of InitializeCriticalSection, which provides an
optimized version of critical sections by employing spin counting. A critical section with spin locking
allows the EnterCriticalSection to be tried up to spin count times before transitioning into kernel mode
to wait for the resource. The advantage to this is that the transition into kernel mode requires
approximately 1,000 CPU cycles.

Moreover, there is a slight chance that entering a critical section may fail due to memory limitations.
The InitializeCriticalSectionAndSpinCount form of the critical section function then returns a status
of STATUS_NO_MEMORY. This is an improvement over the InitializeCriticalSection function,
which does not return any status as can be determined by its void return type.

Critical section code is highlighted in bold.

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>

CRITICAL_SECTION g_cs;
char message[] = "Hello I'm a Thread";

DWORD WINAPI thread_function(PVOID arg) {
 int count2;

 printf("\nthread_function is running. Argument was: %s\n", (char
*)arg);
 for (count2 = 0; count2 < 10; count2++) {
 EnterCriticalSection(&g_cs);
 printf("T");
 LeaveCriticalSection(&g_cs);

Page 27 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 }
 Sleep(3000);
 return 0;
}

void main() {
 HANDLE a_thread;
 DWORD a_threadId;
 DWORD thread_result;
 int count1;

 InitializeCriticalSection(&g_cs);

// Create a new thread.
 a_thread = CreateThread(NULL, 0, thread_function, (PVOID)message,
0, &a_threadId);

 if (a_thread == NULL) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }

 printf("entering loop\n");
 for (count1 = 0; count1 < 10; count1++) {
 EnterCriticalSection(&g_cs);
 printf("P");
 LeaveCriticalSection(&g_cs);
 }

 printf("\nWaiting for thread to finish...\n");
 if (WaitForSingleObject(a_thread, INFINITE) != WAIT_OBJECT_0) {
 perror("Thread join failed");
 exit(EXIT_FAILURE);
 }

// Retrieve the code returned by the thread.
 GetExitCodeThread(a_thread, &thread_result);
 printf("\nThread joined\n");
 DeleteCriticalSection(&g_cs);
 exit(EXIT_SUCCESS);
}

Synchronization using semaphores

In the following example, two threads are created that use a shared memory buffer. Access to the shared
memory is synchronized using a semaphore. The primary thread (main) creates a semaphore object and
uses this object to handshake with the secondary thread (thread_function). The primary thread
instantiates the semaphore in a state that prevents the secondary thread from acquiring the semaphore
while it is initiated.

The primary thread relinquishes the semaphore once the user types in some text at the console and
presses return. Once this is done, the secondary thread acquires the semaphore and processes the shared
memory area. At this point, the main thread is blocked waiting for the semaphore, and will not resume
until the secondary thread has relinquished control by calling ReleaseSemaphore.

These two examples are somewhat different. In UNIX, the semaphore object functions of sem_post and
sem_wait are all that are required to perform handshaking. With Win32, you must use a combination of

Page 28 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

WaitForSingleObject and ReleaseSemaphore in both the primary and the secondary threads in order
to facilitate handshaking. The two solutions are also very different from a syntactic standpoint. The
primary difference between their implementations is with the API calls that are used to manage the
semaphore objects.

One aspect of CreateSemaphore that you need to be aware of is the last argument in its parameter list.
This is a string parameter specifying the name of the semaphore. You should not pass a NULL for this
parameter. Most (but not all) of the kernel objects, including semaphores, are named. All kernel object
names are stored in a common namespace except if it is a server running Microsoft Terminal Server, in
which case there will also be a namespace for each session. If the namespace is global, one or more
unassociated applications could attempt to use the same name for a semaphore. To avoid namespace
contention, applications should use some unique naming convention. One solution you could use would
be to base your semaphore names on globally unique identifiers (GUIDs).

Terminal server and naming semaphore objects

As mentioned earlier, Terminal Servers have multiple namespaces for kernel objects. There is one global
namespace, which is used by kernel objects that are accessible by any and all client sessions and is
usually populated by services. Additionally, each client session has its own namespace to prevent
namespace collisions between multiple instances of the same application running in different sessions.

In addition to the session and global namespaces, Terminal Servers also have a local namespace. By
default, an application's named kernel objects reside in the session namespace. It is possible, however, to
override what namespace will be used. This is accomplished by prefixing the name with Global\ or
Local\. These prefix names are reserved by Microsoft, are case sensitive and are ignored if the computer
is not operating as a Terminal Server.

UNIX example: synchronization using semaphores

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>

#define SHARED_SIZE 1024
char shared_area[SHARED_SIZE];
sem_t bin_sem;

void *thread_function(void *arg) {
 sem_wait(&bin_sem);
 while(strncmp("done", shared_area, 4) != 0) {
 printf("You input %d characters\n", strlen(shared_area) -1);
 sem_wait(&bin_sem);
 }
 pthread_exit(NULL);
}

int main() {
 int res;
 pthread_t a_thread;
 void *thread_result;

 res = sem_init(&bin_sem, 0, 0);
 if (res != 0) {

Page 29 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 perror("Semaphore initialization failed");
 exit(EXIT_FAILURE);
 }
 res = pthread_create(&a_thread, NULL, thread_function, NULL);
 if (res != 0) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }
 printf("Input some text. Enter 'done' to finish\n");
 while(strncmp("done", shared_area, 4) != 0) {
 fgets(shared_area, SHARED_SIZE, stdin);
 sem_post(&bin_sem);
 }
 printf("\nWaiting for thread to finish...\n");
 res = pthread_join(a_thread, &thread_result);
 if (res != 0) {
 perror("Thread join failed");
 exit(EXIT_FAILURE);
 }
 printf("\nThread joined\n");
 sem_destroy(&bin_sem);
 exit(EXIT_SUCCESS);
}

Win32 example: synchronization using semaphores

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>

#define SHARED_SIZE 1024
char shared_area[SHARED_SIZE];
LPCTSTR lpszSemaphore = "SEMAPHORE-EXAMPLE";
HANDLE sem_t;

DWORD WINAPI thread_function(PVOID arg) {
 LONG dwSemCount;
 HANDLE hSemaphore = OpenSemaphore(SYNCHRONIZE |
SEMAPHORE_MODIFY_STATE, FALSE, lpszSemaphore);

 WaitForSingleObject(hSemaphore, INFINITE);
 while(strncmp("done", shared_area, 4) != 0) {
 printf("You input %d characters\n", strlen(shared_area) -1);
 ReleaseSemaphore(hSemaphore, 1, &dwSemCount);
 WaitForSingleObject(hSemaphore, INFINITE);
 }
 ReleaseSemaphore(hSemaphore, 1, &dwSemCount);
 CloseHandle(hSemaphore);
 return 0;
}

void main() {
 HANDLE a_thread;
 DWORD a_threadId;
 DWORD thread_result;
 LONG dwSemCount;

// Initialize Semaphore object.
 sem_t = CreateSemaphore(NULL, 0, 1, lpszSemaphore);

Page 30 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 if (sem_t == NULL) {
 perror("Semaphore initialization failed");
 exit(EXIT_FAILURE);
 }

// Create a new thread.
 a_thread = CreateThread(NULL, 0, thread_function, (PVOID)NULL, 0,
&a_threadId);

 if (a_thread == NULL) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }

 printf("Input some text. Enter 'done' to finish\n");
 while(strncmp("done", shared_area, 4) != 0) {
 fgets(shared_area, SHARED_SIZE, stdin);
 ReleaseSemaphore(sem_t, 1, &dwSemCount);
 WaitForSingleObject(sem_t, INFINITE);
 }

 printf("\nWaiting for thread to finish...\n");
 if (WaitForSingleObject(a_thread, INFINITE) != WAIT_OBJECT_0) {
 perror("Thread join failed");
 exit(EXIT_FAILURE);
 }

// Retrieve the code returned by the thread.
 GetExitCodeThread(a_thread, &thread_result);

 printf("\nThread joined\n");
 exit(EXIT_SUCCESS);
}

Synchronization using mutexes

A mutex is a kernel object that provides a thread with mutually exclusive access to a single resource.
Any thread of the calling process can specify the mutex-object handle in a call to one of the wait
functions. The single-object wait functions return when the state of the specified object is signaled. The
state of a mutex object is signaled when it is not owned by any thread. When the mutex's state is
signaled, one waiting thread is granted ownership, the mutex's state changes to nonsignaled, and the wait
function returns. Only one thread can own a mutex at any given time. The owning thread uses the
ReleaseMutex function to release its ownership.

The next example looks at the use of mutexes to coordinate access to a shared resource, and to
handshake between two threads. The logic is virtually identical to the semaphore example in the
previous section. The only real difference is that this example uses a mutex instead of a semaphore.

UNIX example: thread synchronization using mutexes

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>

Page 31 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

#define SHARED_SIZE 1024
char shared_area[SHARED_SIZE];
pthread_mutex_t shared_mutex; /* protects shared_area */

void *thread_function(void *arg) {
 pthread_mutex_lock(&shared_mutex);
 while(strncmp("done", shared_area, 4) != 0) {
 printf("You input %d characters\n", strlen(shared_area) -1);
 pthread_mutex_unlock(&shared_mutex);
 pthread_mutex_lock(&shared_mutex);
 }
 pthread_mutex_unlock(&shared_mutex);
 pthread_exit(0);
}

int main() {
 int res;
 pthread_t a_thread;
 void *thread_result;
 res = pthread_mutex_init(&shared_mutex, NULL);
 if (res != 0) {
 perror("Mutex initialization failed");
 exit(EXIT_FAILURE);
 }
 res = pthread_create(&a_thread, NULL, thread_function, NULL);
 if (res != 0) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }
 pthread_mutex_lock(&shared_mutex);
 printf("Input some text. Enter 'done' to finish\n");
 while (strncmp("done", shared_area, 4) != 0) {
 fgets(shared_area, SHARED_SIZE, stdin);
 pthread_mutex_unlock(&shared_mutex);
 pthread_mutex_lock(&shared_mutex);
 }

 pthread_mutex_unlock(&shared_mutex);
 printf("\nWaiting for thread to finish...\n");
 res = pthread_join(a_thread, &thread_result);
 if (res != 0) {
 perror("Thread join failed");
 exit(EXIT_FAILURE);
 }
 printf("\nThread joined\n");
 pthread_mutex_destroy(&shared_mutex);
 exit(EXIT_SUCCESS);
}

Win32 example: thread synchronization using mutexes

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>

#define SHARED_SIZE 1024
char shared_area[SHARED_SIZE];
LPCTSTR lpszMutex = "MUTEX-EXAMPLE";
HANDLE shared_mutex;

Page 32 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

DWORD WINAPI thread_function(PVOID arg) {
 HANDLE hMutex = OpenMutex(MUTEX_ALL_ACCESS, FALSE, lpszMutex);

 WaitForSingleObject(hMutex, INFINITE);
 while(strncmp("done", shared_area, 4) != 0) {
 printf("You input %d characters\n", strlen(shared_area) -1);
 ReleaseMutex(hMutex);
 WaitForSingleObject(hMutex, INFINITE);
 }
 ReleaseMutex(hMutex);
 CloseHandle(hMutex);
 return 0;
}

void main() {
 HANDLE a_thread;
 DWORD a_threadId;
 DWORD thread_result;

// Initialize Semaphore object.
 shared_mutex = CreateMutex(NULL, TRUE, lpszMutex);

 if (shared_mutex == NULL) {
 perror("Mutex initialization failed");
 exit(EXIT_FAILURE);
 }

// Create a new thread.
 a_thread = CreateThread(NULL, 0, thread_function, (PVOID)NULL, 0,
&a_threadId);

 if (a_thread == NULL) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }

 printf("Input some text. Enter 'done' to finish\n");
 while(strncmp("done", shared_area, 4) != 0) {
 fgets(shared_area, SHARED_SIZE, stdin);
 ReleaseMutex(shared_mutex);
 WaitForSingleObject(shared_mutex, INFINITE);
 }

 ReleaseMutex(shared_mutex);
 printf("Waiting for thread to finish...\n");
 if (WaitForSingleObject(a_thread, INFINITE) != WAIT_OBJECT_0) {
 perror("Thread join failed");
 exit(EXIT_FAILURE);
 }

// Retrieve the code returned by the thread.
 GetExitCodeThread(a_thread, &thread_result);
 CloseHandle(shared_mutex);

 printf("Thread joined\n");
 exit(EXIT_SUCCESS);
}

Page 33 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Thread Attributes

There are a number of attributes associated with threads in UNIX that you need to convert into
equivalent attributes in Win32. This section contrasts the UNIX and Win32 thread attributes and
describes how you should convert your code. Table 5 lists the relevant UNIX thread attributes, and then
each attribute is discussed individually:

Table 5. UNIX thread attributes

Detachstate

Detachstate indicates whether a thread can be waited on for termination. Within Win32, the same effect
is achieved by closing any handles that exist for a given thread. Since a handle is required for one of the
wait and thread management functions, without a handle, you are effectively stopped from acting on a
thread. You can also control thread objects based on a security descriptor that is provided at the time the
thread is created.

Note For more information on Access-Control, see Platform SDK: Security: Access
Control.

The handle returned by the CreateThread function has THREAD_ALL_ACCESS access to the thread

Attribute Default values Description
detachstate PTHREAD_CREATE_JOINABLE

PTHREAD_CREATE_DETACHED
Thread may be joined by other
threads.
Threads may not be waited on for
termination.

inheritsched PTHREAD_INHERIT_SCHED
PTHREAD_EXPLICIT_SCHED

Scheduling parameters, policy,
and scope are inherited from
creating thread.
Scheduling parameters for the
newly created thread are
specified in the thread attribute.

schedparam — Priority set to default for
scheduling policy.

schedpolicy SCHED_OTHER
SCHED_FIFO
SCHED_RR

Scheduling policy is determined
by the system.
Threads are scheduled in a first-
in-first-out order.
Threads are scheduled in a round-
robin fashion.

Scope PTHREAD_SCOPE_SYSTEM
PTHREAD_SCOPE_PROCESS

Threads are scheduled system-
wide.
Threads are scheduled based on
other threads in the owning
process.

Stackaddr N/A Attribute not supported; address
selected by the operating system.

Stacksize 0 Stack size inherited from process
stack size attribute.

Page 34 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

object. When you call the GetCurrentThread function, the system returns a pseudohandle with the
maximum access that the thread's security descriptor allows the caller.

The valid access rights for thread objects include the DELETE, READ_CONTROL, SYNCHRONIZE,
WRITE_DAC, and WRITE_OWNER standard access rights, in addition to the thread-specific access
rights shown in Table 6.

Table 6. Thread-specific access rights

Inheritsched/schedparam/schedpolicy/scope

Inheritsched/schedparam/schedpolicy/scope indicates that the scheduling is either inherited from the
thread that created the new thread, or is explicitly set. It also defines the policy and scope applied to
scheduling threads. In Win32, by default, the priority class of a process is
NORMAL_PRIORITY_CLASS. Use the CreateProcess function to specify the priority class of a child
process when you create it.

If the calling process is IDLE_PRIORITY_CLASS or BELOW_NORMAL_PRIORITY_CLASS, the
new process inherits this class. You use the GetPriorityClass function to determine the current priority
class of a process and the SetPriorityClass function to change the priority class of a process.

Stacksize

The stack size applied to a thread is controlled at the time the thread is created by using CreateThread.
The initial size of the stack is specified in bytes. The system rounds this value to the nearest page. If this
parameter is of zero value, the new thread uses the default size for the executable.

Setting thread attributes

Value Meaning
SYNCHRONIZE A standard right required to wait for the thread to

exit.
THREAD_ALL_ACCESS Specifies all possible access rights for a thread

object.
THREAD_DIRECT_IMPERSONATION Required for a server thread that impersonates a

client.
THREAD_GET_CONTEXT Required to read the context of a thread by using

GetThreadContext.
THREAD_IMPERSONATE Required to use a thread's security information

directly without calling it by using a communication
mechanism that provides impersonation services.

THREAD_QUERY_INFORMATION Required to read certain information from the thread
object.

THREAD_SET_CONTEXT Required to write the context of a thread.
THREAD_SET_INFORMATION Required to set certain information in the thread

object.
THREAD_SET_THREAD_TOKEN Required to set the impersonation token for a thread.
THREAD_SUSPEND_RESUME Required to suspend or resume a thread.
THREAD_TERMINATE Required to terminate a thread.

Page 35 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Now that the thread attributes have been described, let's take a look at a simple example of how the
attributes of a thread can be set.

The UNIX example below makes some basic use of thread attributes. The corresponding Win32
example doesn't even need to use attributes to accomplish the same functionality. All that is required
with Win32 is to create a thread that can't be acted upon by a wait. This can be accomplished by passing
NULL as the dwThreadId parameter to CreateThread, and by closing the handle that is returned by
the call.

The net effect of these combined activities effectively hinders an application's ability to manage the
thread. This issue is addressed in the "Thread Scheduling and Priorities" section later in this chapter.

UNIX example setting thread attributes

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

char message[] = "Hello I'm a Thread";
int thread_finished = 0;

void *thread_function(void *arg) {
 printf("thread_function running. Arg was: %s\n", (char *)arg);
 sleep(4);
 printf("Second thread setting finished flag, and exiting now\n");
 thread_finished = 1;
 pthread_exit(NULL);
}

int main() {
 int count=0, res;
 pthread_t a_thread;
 void *thread_result;
 pthread_attr_t thread_attr;

 res = pthread_attr_init(&thread_attr);
 if (res != 0) {
 perror("Attribute creation failed");
 exit(EXIT_FAILURE);
 }
 res = pthread_attr_setdetachstate(&thread_attr,
PTHREAD_CREATE_DETACHED);
 if (res != 0) {
 perror("Setting detached attribute failed");
 exit(EXIT_FAILURE);
 }
 res = pthread_create(&a_thread, &thread_attr, thread_function,
 (void *)message);
 if (res != 0) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }
 (void)pthread_attr_destroy(&thread_attr);
 while(!thread_finished) {
 printf("Waiting for thread to finish (%d)\n", ++count);
 sleep(1);

Page 36 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 }
 printf("Other thread finished, See Ya!\n");
 exit(EXIT_SUCCESS);
}

Win32 example: setting thread attributes

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>

char message[] = "Hello I'm a Thread";
int thread_finished = 0;

DWORD WINAPI thread_function(PVOID arg) {
 printf("\nthread_function running. Arg was: %s\n", (char *)arg);
 Sleep(4000);
 printf("Second thread setting finished flag, and exiting now\n");
 thread_finished = 1;
 return 100;
}

void main() {
 int count=0;
 HANDLE a_thread;

// Create a new thread.
 a_thread = CreateThread(NULL, 0, thread_function, (PVOID)message,
0, NULL);

 if (a_thread == NULL) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }

 CloseHandle(a_thread);

 while(!thread_finished) {
 printf("Waiting for thread to finish (%d)\n", ++count);
 Sleep(1000);
 }
 printf("Other thread finished, See Ya!\n");

 exit(EXIT_SUCCESS);
}

Win32 security and thread objects

Threads are kernel objects. As such, they are protected by Windows security, and therefore a process
must request permission to manipulate an object before attempts are made. The creator of the object can
prevent an unauthorized user from doing anything with the object by denying access to it.

Object flags are covered as part of the thread discussion here, but this information also pertains to other
kernel objects that are obtained by using one of the Win32 Create functions.

Until now, threads have been created in these solutions with a NULL security attribute. This indicated

Page 37 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

that the thread should be created using the default security, and that the returned handle should be
inheritable. If you want to change the behavior of the previous example to prevent the thread handle
from being inherited and or closed, you could use the SetHandleInformation function to accomplish
this. The following is an example of this:

#define HANDLE_FLAG_INHERIT 0x00000001
#define HANDLE_FLAG_PROTECT_FROM_CLOSE 0x00000002

SetHandleInformation(hThread, HANDLE_FLAG_INHERIT,
HANDLE_FLAG_INHERIT);
SetHandleInformation(hThread, HANDLE_FLAG_PROTECT_FROM_CLOSE,
HANDLE_FLAG_PROTECT_FROM_CLOSE);

To change both flags in a single call you should bitwise OR the flags together. After this call, attempting
to close the handle by using CloseHandle would result in an exception being raised.

Thread Scheduling and Priorities

This section looks at how you can change the scheduling priority of a thread in UNIX and Win32.

Ideally, you want to map Win32 priority classes to UNIX scheduling policies, and Win32 thread priority
levels to UNIX priority levels. Unfortunately, it isn't this simple.

The priority level of a Win32 thread is determined by both the priority class of its process and its
priority level. The priority class and priority level are combined to form the base priority of each thread.

Every thread in Windows has a base priority level determined by the thread's priority value and the
priority class of its owning process. The operating system uses the base priority level of all executable
threads to determine which thread gets the next slice of CPU time. Threads are scheduled in a round-
robin fashion at each priority level, and only when there are no executable threads at a higher level will
scheduling of threads at a lower level take place.

UNIX offers both round robin and FIFO scheduling algorithms, whereas Windows uses only round
robin. This does not mean that Windows is less flexible; it simply means that any fine tuning that was
performed on thread scheduling in UNIX has to be implemented differently when using Windows.

Table 7 shows the base priority levels for combinations of priority class and priority value.

Table 7. Process and thread priority

Process priority class Thread priority level
1 IDLE_PRIORITY_CLASS THREAD_PRIORITY_IDLE
1 BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_IDLE
1 NORMAL_PRIORITY_CLASS THREAD_PRIORITY_IDLE
1 ABOVE_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_IDLE
1 HIGH_PRIORITY_CLASS THREAD_PRIORITY_IDLE
2 IDLE_PRIORITY_CLASS THREAD_PRIORITY_LOWEST
3 IDLE_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL
4 IDLE_PRIORITY_CLASS THREAD_PRIORITY_NORMAL
4 BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_LOWEST

Page 38 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

5 IDLE_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL
5 BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL
5 Background NORMAL_PRIORITY_CLASS THREAD_PRIORITY_LOWEST
6 IDLE_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST
6 BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_NORMAL
6 Background NORMAL_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL
7 BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL
7 Background NORMAL_PRIORITY_CLASS THREAD_PRIORITY_NORMAL
7 Foreground NORMAL_PRIORITY_CLASS THREAD_PRIORITY_LOWEST
8 BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST
8 NORMAL_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL
8 Foreground NORMAL_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL
8 ABOVE_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_LOWEST
9 NORMAL_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST
9 Foreground NORMAL_PRIORITY_CLASS THREAD_PRIORITY_NORMAL
9 ABOVE_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL
10 Foreground NORMAL_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL
10 ABOVE_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_NORMAL
11 Foreground NORMAL_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST
11 ABOVE_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL
11 HIGH_PRIORITY_CLASS THREAD_PRIORITY_LOWEST
12 ABOVE_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST
12 HIGH_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL
13 HIGH_PRIORITY_CLASS THREAD_PRIORITY_NORMAL
14 HIGH_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL
15 HIGH_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST
15 HIGH_PRIORITY_CLASS THREAD_PRIORITY_TIME_CRITICAL
15 IDLE_PRIORITY_CLASS THREAD_PRIORITY_TIME_CRITICAL
15 BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_TIME_CRITICAL
15 NORMAL_PRIORITY_CLASS THREAD_PRIORITY_TIME_CRITICAL
15 ABOVE_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_TIME_CRITICAL
16 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_IDLE
17 REALTIME_PRIORITY_CLASS -7
18 REALTIME_PRIORITY_CLASS -6
19 REALTIME_PRIORITY_CLASS -5
20 REALTIME_PRIORITY_CLASS -4
21 REALTIME_PRIORITY_CLASS -3
22 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_LOWEST
23 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL
24 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_NORMAL
25 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL
26 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST
27 REALTIME_PRIORITY_CLASS 3
28 REALTIME_PRIORITY_CLASS 4
29 REALTIME_PRIORITY_CLASS 5
30 REALTIME_PRIORITY_CLASS 6
31 REALTIME_PRIORITY_CLASS

Page 39 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Managing thread priorities in Windows

The Win32 API provides a number of functions for managing thread priorities:

l GetThreadContext

Returns the execution context of the specified thread. The following is an example showing the
thread context:

CONTEXT context;
TCHAR szBuffer[128];
Context.ContextFlags = CONTEXT_FULL | CONTEXT_DEBUG_REGISTERS;
GetThreadContext(GetCurrentThread(), &context);
printf("CS=%X, EIP=%X, FLAGS=%X, DR1=%X\n",
 context.SegCs, context.Eip, context.EFlags, context.Dr1);

l GetThreadPriority

Returns the assigned thread priority level for the specified thread. The priority for the thread and
the process class determine the thread's base priority level.

To see how thread priority affects the system, a simple test like the one below could be added to a
simple Windows application:

SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_LOWEST);
DWORD dwTicks = GetTickCount();
for(long i = 0; i < 200000; i ++)
 for(long j = 0; j < 2000; j ++)
printf("Test time=%ld\n", GetTickCount()-dwTicks);

Adjusting the thread priority should yield different time deltas.

l GetThreadPriorityBoost

Retrieves the priority boost control state of the specified thread.

Threads have dynamic priority, meaning the priority that the scheduler uses to identify which
thread will execute. Initially, a thread's priority is the same as its base priority, but the system may
increase or decrease the priority to maintain thread responsiveness. Only threads with a priority
between 0 and 15 are eligible for dynamic priority boost.

The system boosts the dynamic priority of a thread to enhance its responsiveness as follows:
l When a process that uses NORMAL_PRIORITY_CLASS is brought to the foreground, the

scheduler boosts the priority class of the process associated with the foreground window so
that it is greater than or equal to the priority class of any background processes. The priority
class returns to its original setting when the process is no longer in the foreground.

In the Microsoft Windows NT® operating system, as well as in Windows 2000 or later, the
user can control the boosting of processes that use NORMAL_PRIORITY_CLASS through
the system Control Panel.

THREAD_PRIORITY_TIME_CRITICAL

Page 40 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l When a window receives input, such as timer messages, mouse messages or keyboard input,
the scheduler boosts the priority of the thread that owns the window.

l When the wait conditions for a blocked thread are satisfied, the scheduler boosts the priority
of the thread. For example, when a wait operation associated with disk or keyboard I/O
finishes, the thread receives a priority boost.

l SetPriorityClass

Adjusts the priority class of a given process.

l SetThreadIdealProcessor

Specifies the preferred processor for a specific thread. The system schedules threads on the
preferred processor when possible.

l SetThreadPriority

Changes the priority level for a thread. Consult the Win32 API reference for details on the
different priority levels.

l SetThreadPriorityBoost

Enables or disables dynamic priority boost by the system.

An example of converting UNIX thread scheduling into Windows

In this example, the thread priority level is set to the lowest level within the given policy or class for
UNIX and Windows respectively. For UNIX, lowering the thread priority level requires creating an
attribute object prior to instantiating the thread, and then setting the policy of the attribute object. Once
this activity is complete, the thread is created with the modified attribute. Upon successfully
instantiating the thread, the priority level is adjusted to the lowest level within the designated policy and
class. In UNIX, this is accomplished by a call to pthread_attr_setschedparam, and when using Win32
by a call to SetThreadPriority.

UNIX example: thread scheduling

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

char message[] = "Hello I'm a Thread";
int thread_finished = 0;

void *thread_function(void *arg) {
 printf("thread_function running. Arg was %s\n", (char *)arg);
 sleep(4);
 printf("Second thread setting finished flag, and exiting now\n");
 thread_finished = 1;
 pthread_exit(NULL);
}

int main() {
 int count=0, res, min_priority, max_priority;

Page 41 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 struct sched_param scheduling_params;
 pthread_t a_thread;
 void *thread_result;
 pthread_attr_t thread_attr;

 res = pthread_attr_init(&thread_attr);
 if (res != 0) {
 perror("Attribute creation failed");
 exit(EXIT_FAILURE);
 }
 res = pthread_attr_setschedpolicy(&thread_attr, SCHED_OTHER);
 if (res != 0) {
 perror("Setting schedpolicy failed");
 exit(EXIT_FAILURE);
 }
 res = pthread_attr_setdetachstate(&thread_attr,
PTHREAD_CREATE_DETACHED);
 if (res != 0) {
 perror("Setting detached attribute failed");
 exit(EXIT_FAILURE);
 }
 res = pthread_create(&a_thread, &thread_attr, thread_function,
 (void *)message);
 if (res != 0) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }
 max_priority = sched_get_priority_max(SCHED_OTHER);
 min_priority = sched_get_priority_min(SCHED_OTHER);
 scheduling_params.sched_priority = min_priority;
 res = pthread_attr_setschedparam(&thread_attr,
 &scheduling_params);
 if (res != 0) {
 perror("Setting schedparam failed");
 exit(EXIT_FAILURE);
 }
 (void)pthread_attr_destroy(&thread_attr);
 while(!thread_finished) {
 printf("Waiting for thread to finish (%d)\n", ++count);
 sleep(1);
 }
 printf("Other thread finished, See Ya!\n");
 exit(EXIT_SUCCESS);
}

Win32 example: thread scheduling

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>

DWORD WINAPI thread_function(PVOID arg);

char message[] = "Hello I'm a Thread";
int thread_finished = 0;

void main() {
 int count=0;
 HANDLE a_thread;

Page 42 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

// Create a new thread.
 a_thread = CreateThread(NULL, 0, thread_function, (PVOID)message,
0, NULL);

 if (a_thread == NULL) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }

 if (!SetThreadPriority(a_thread, THREAD_PRIORITY_LOWEST)) {
 perror("Setting sched priority failed");
 exit(EXIT_FAILURE);
 }

 CloseHandle(a_thread);

 while(!thread_finished) {
 printf("Waiting for thread to finished (%d)\n", ++count);
 Sleep(1000);
 }
 printf("Other thread finished, bye!\n");

 exit(EXIT_SUCCESS);
}

DWORD WINAPI thread_function(PVOID arg) {
 printf("thread_function running. Arg was %s\n", (char *)arg);
 Sleep(4000);
 printf("Second thread setting finished flag, and exiting now\n");
 thread_finished = 1;
 return 100;
}

In the preceding Win32 example, the priority level of the thread is adjusted to the lowest level within the
priority class of the owning process. If you want to change the priority class as well as the priority level,
insert the following code just before the SetThreadPriority call

SetPriorityClass(GetCurrentProcess(), PriorityClass)

where PriorityClass would have been one of the following values Table 8 summarizes how to change
the scheduling priority for a thread and priority class for the owning process.

Table 8. PriorityClass values

PriorityClass Meaning
ABOVE_NORMAL_PRIORITY_CLASS Windows 2000 and XP: Indicates a process that has

priority above NORMAL_PRIORITY_CLASS but
below HIGH_PRIORITY_CLASS.

BELOW_NORMAL_PRIORITY_CLASS Windows 2000 and XP: Indicates a process that has
priority above IDLE_PRIORITY_CLASS but below
NORMAL_PRIORITY_CLASS.

HIGH_PRIORITY_CLASS Specifies this class for a process that performs time-
critical tasks that must be executed immediately. The
threads of the process preempt the threads of normal

Page 43 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Managing Multiple Threads

In the next two examples, numerous threads are created that terminate at random times. Their
termination and display messages are then caught to indicate their termination status.

Although this example is contrived, it does illustrate one key point: the semantics of creating multiple
threads and waiting for their completion are similar in both platforms.

UNIX example: multiple threads in

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

#define NUM_THREADS 5

void *thread_function(void *arg) {
 int t_number = *(int *)arg;
 int rand_delay;

 printf("thread_function running. Arg was %d\n", t_number);
// Seed the random-number generator with current time so that
// the numbers will be different each time function is run.
 srand((unsigned)time(NULL));
// random time delay from 1 to 10
 rand_delay = 1+ 9.0*(float)rand()/(float)RAND_MAX;
 sleep(rand_delay);
 printf("See Ya from thread #%d\n", t_number);
 pthread_exit(NULL);

or idle priority class processes. An example is the
Task List, which must respond quickly when called
by the user, regardless of the load on the operating
system. Use extreme care when using the high-
priority class, because a high-priority class
application can use nearly all available CPU time.

IDLE_PRIORITY_CLASS Specifies this class for a process whose threads run
only when the system is idle. The threads of the
process are preempted by the threads of any process
running in a higher priority class. An example is a
screen saver. The idle-priority class is inherited by
child processes.

NORMAL_PRIORITY_CLASS Specifies this class for a process with no special
scheduling needs.

REALTIME_PRIORITY_CLASS Specifies this class for a process that has the highest
possible priority. The threads of the process preempt
the threads of all other processes, including the
operating system processes, which may be
performing important tasks. For example, a real-time
process that executes for more than a very brief
interval can prevent disk caches from flushing, or
can cause the mouse to be unresponsive.

Page 44 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

}

int main() {
 int res;
 pthread_t a_thread[NUM_THREADS];
 void *thread_result;
 int multiple_threads;

 for(multiple_threads = 0; multiple_threads < NUM_THREADS;
 multiple_threads++) {
 res = pthread_create(&(a_thread[multiple_threads]), NULL,
 thread_function, (void *)&multiple_threads);
 if (res != 0) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }
 sleep(1);
 }
 printf("Waiting for threads to finish…\n");
 for(multiple_threads = NUM_THREADS - 1; multiple_threads >= 0;
 multiple_threads--) {

res = pthread_join(a_thread[multiple_threads],
 &thread_result);
 if (res == 0) {
 printf("Another thread\n");
 }
 else {
 perror("pthread_join failed");
 }
 }
 printf("All done\n");
 exit(EXIT_SUCCESS);
}

Win32 example: multiple threads in

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define NUM_THREADS 5

DWORD WINAPI thread_function(PVOID arg) {
 int t_number = *(int *)arg;
 int rand_delay;

 printf("thread_function running. Arg was %d\n", t_number);
// Seed the random-number generator with current time so that
// the numbers will be different each time function is run.
 srand((unsigned)time(NULL));
// random time delay from 1 to 10
 rand_delay = 1 + (rand() % 10);
 Sleep(rand_delay*1000);
 printf("See Ya from thread #%d\n", t_number);
 return 100;
}

void main() {

Page 45 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 HANDLE a_thread[NUM_THREADS];
 int multiple_threads;

 for(multiple_threads = 0; multiple_threads < NUM_THREADS;
 multiple_threads++) {
 // Create a new thread.
 a_thread[multiple_threads] =
 CreateThread(NULL, 0, thread_function,
(PVOID)&multiple_threads, 0, NULL);

 if (a_thread[multiple_threads] == NULL) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }

 Sleep(1000);
 }

 printf("Waiting for threads to finish...\n");
 for(multiple_threads = NUM_THREADS - 1; multiple_threads >= 0;
 multiple_threads--) {

if (WaitForSingleObject(a_thread[multiple_threads], INFINITE) ==
 WAIT_OBJECT_0) {
 printf("Another thread\n");
 }
 else {
 perror("WaitForSingleObject failed");
 }
 }
 printf("All done\n");

 exit(EXIT_SUCCESS);
}

Fibers

A fiber is a lightweight thread that must be scheduled by the owning thread. Fibers exist within the
context of the thread that schedules them and operate with the identity of the thread. Fibers should not
be considered a replacement for a well-designed, multithreaded application. Instead, fibers should be
used in situations where a design requires finely tuned scheduling, and are typically used when porting
applications that require proprietary task-switching algorithms.

The primary difference between fibers and threads is that fibers are not preemptively scheduled. One
key point, however, is that fibers are owned by a thread, and threads can be preempted by the task
switcher. When a thread is suspended, so is the current fiber, and when a thread is resumed, so is the
fiber that was active before being preempted.

Memory Management

Like UNIX, Windows has the standard heap management functions. Windows also sports functions for
managing memory on a thread basis. Like many of the functional comparisons between UNIX and
Windows, you can be best served by consulting guides for UNIX and Win32 programming. The basic
functional mapping is covered in the next few sections.

Heap

Page 46 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Windows provides services similar to UNIX with respect to heap management functionality. The
standard C runtime includes comparable functions for calloc, malloc, free and so on. It also has
additional functions that may or may not be available in UNIX. The more significant added functionality
is covered briefly in the following section.

Thread Local Storage

This section is a brief introduction to Thread Local Storage (TLS). For complete details, you should
consult the Win32 API reference. The purpose of TLS is to define memory on a per-thread basis. The
typical scenario where TLS would be used is within a dynamic-linked library (DLL), but this is not the
only possible use. In the case of the DLL scenario, here are some of the details of its use:

l When a DLL attaches to a process, the DLL uses TlsAlloc to allocate a TLS index. The DLL then
allocates some dynamic storage and uses the TLS index in a call to TlsSetValue to store the
address in the TLS slot. This concludes the per-thread initialization for the initial thread of the
process. The TLS index is stored in a global or static variable of the DLL.

l Each time the DLL attaches to a new thread of the process, the DLL allocates some dynamic
storage for the new thread and uses the TLS index in a call to TlsSetValue to store the address in
the TLS slot. This concludes the per-thread initialization for the new thread.

l Each time an initialized thread makes a DLL call requiring the data in its dynamic storage, the
DLL uses the TLS index in a call to TlsGetValue to retrieve the address of the dynamic storage
for that thread.

The functions used to manage Thread Local Storage are described below:

l TlsAlloc

Allocates a thread local storage (TLS) index. A TLS index is used by a thread to store and retrieve
values that are local to the thread. The minimum number of indices available to each process is
defined by TLS_MINIMUM_AVAILABLE. TLS indices are not valid across process boundaries.

l TlsFree

Releases a thread local storage index. This, however, does not release the data allocated and set in
the TLS index slot.

l TlsSetValue

Stores memory in a thread local storage index.

l TlsGetValue

Returns a memory element stored in a specified thread local storage index.

Thread local storage example

The following section shows a portion of an example application. It illustrates allocation and access to a
memory space on a per-thread basis. First, there is the main thread of the process that allocates a
memory slot. The memory slot is then accessed and modified by a child thread. If several instances of
the thread are active, each thread procedure would have a unique TLSIndex value to ensure the

Page 47 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

separation and isolation of data and state.

DWORD TLSIndex = 0;
DWORD WINAPI ThreadProc(LPVOID lpData)
{
 HWND hWnd = (HWND) lpData;
LPVOID lpVoid = HeapAlloc(GetProcessHeap(), 0, 128);

 TlsSetValue(TLSIndex, lpVoid);

// Do your processing on the memory within the thread here. . .
 HeapFree(GetProcessHeap(), 0, lpVoid);

 Return(0);
}

LRESULT CALLBACK WndProc(HWND …
{

switch(uMsg)
 {
 case WM_CREATE:
 TLSIndex = TlsAlloc();

 // Start your threads using CreateThread…
Break;

 Case WM_DESTROY:
 TlsFree(TLSIndex);
 Break;
 Case WM_COMMAND:
 Switch(LWORD(wParam))
 {
 case IDM_TEST:
// Do something with the TLS value by a call to TlsGetValue(DWORD)
 break;
 }
 }
}

Memory-Mapped Files

Windows supports memory-mapped files and memory-mapped page files. Memory-mapped page files
are covered in the "Shared Memory" section as part of an exercise to port System V IPC shared memory
to Windows using memory-mapped files.

Creating and using shared memory in UNIX and in Windows are conceptually the same, but
syntactically different. A simple example of creating a shared memory area and mapping it in UNIX
follows:

if ((fd = open("/dev/zero", O_RDWR)) < 0)
 err_sys("open error");
if ((area = mmap(0, SIZE, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0)) == (caddr_t) -1)
 err_sys("mmap error");

close(fd); // can close /dev/zero now that it's mapped

In Win32, it is coded as follows:

Page 48 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

hMapObject = CreateFileMapping(
 INVALID_HANDLE_VALUE, // use paging file
 NULL, // no security attributes
 PAGE_READWRITE, // read/write access
 0, // size: high 32-bits
 SHMEMSIZE, // size: low 32-bits
 "dllmemfilemap"); // name of map object
if (hMapObject != NULL) {
// Get a pointer to the file-mapped shared memory.
 lpvMem = MapViewOfFile(
 hMapObject, // object to map view of
 FILE_MAP_WRITE, // read/write access
 0, // high offset: map from
 0, // low offset: beginning
 0); // default: map entire file
 if (lpvMem == NULL) {
 CloseHandle(hMapObject);
 }
 }

For details on the CreateFileMapping and MapViewOfFile functions, see the Win32 API
documentation.

Shared Memory

Shared memory permits two or more threads or processes to share a region of memory. It is generally
considered the most performant method of IPC since data is not copied as part of the communication
process. Instead, the same physical area of memory is accessed by both the client and the server.

Windows does not support the standard System V interprocess communications mechanisms for shared
memory (the shm*() APIs). It does, however, support memory-mapped files and memory-mapped page
files, which you can use as an alternative to the shm*() APIs.

In Appendix A: Shared Memory, there is an example of how to port a simple UNIX application based
on System V IPC to Windows, based on memory-mapped page file.

Synchronizing Access to Shared Resources

The technical challenge of using shared memory is to ensure that the server and client are not attempting
to access the shared resource simultaneously. This is particularly troublesome if one or both are writing
to the same-shared memory area. For example, if the server is writing to the shared memory, the client
should not try to access the data until the server has completed the write operation.

To address this, several forms of synchronization are available for use in Windows. In Appendix C:
Creating a Thread in Windows, the different forms of synchronization available in Windows are shown.
These are:

l Semaphore
l Mutex
l Event and critical section

UNIX has two of these mechanisms, the semaphore and the semaphore, as well as an additional
mechanism: file locking.

Page 49 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The first three mechanisms have two states: signaled and non-signaled. The synchronization object is
considered busy when it is in a non-signaled state. When the object is busy, a waiting thread will block
until the object switches to a signaled state. At this time, the pending thread continues executing.

The last form of synchronization is the critical section object. The critical section object is only for
synchronizing threads within a single process. This synchronization mechanism only works for a single
instance of the example application. While this is true, you can still consider its use as an IPC
synchronization mechanism. This form of synchronization is appropriate for cases where you want to
migrate your existing application from a multiprocess architecture to a single process with multithreaded
architecture.

A complete Windows example of using threads, shared memory, semaphore, mutexes, and critical
sections and events can be found in Appendix C: Creating a Thread in Windows.

Note For applications that consume large amounts of memory and that are constrained by
a lack of virtual address space, large memory support is available on Windows 2000
Advanced Server, Windows 2000 Datacenter Server, and Windows XP. A process running
when using Windows normally has 2 GB of memory available in both user and system
space. If the /3GB switch is inserted into Boot.ini file, Windows changes the split to give
user space 3 GB and system space 1 GB. This change is a system wide option and applies to
all applications run on the computer so using the /3GB switch should be analyzed for
undesired side effects. See Knowledge Base article Q295443 for a sample of how to modify
Boot.ini.

Applications that need to control the amount of stack or heap space can use linker switches
for this purpose. The default size for both the stack and heap is 1 MB. Use the /STACK
option to set the size of the stack and the /HEAP option to set the heap size. Both options
take the size in bytes.

Further Reading on Memory Management

A few references on memory management that you may want to acquire are:

l Solomon, David A., and Russinovich, Mark E. Inside Microsoft Windows 2000, Third Edition.
Redmond, WA: Microsoft Press, 2000. (See Chapters 7 and 10.)

l Richter, Jeffrey. Programming Applications for Microsoft Windows, Fourth Edition. Redmond,
WA: Microsoft Press, 1999. (See Part III, Chapters 13-18.)

l Stevens, W. Richard. Advanced Programming in the UNIX Environment. Reading, MA: Addison-
Wesley Publishing Co., 1992.

Users, Groups and Security

The UNIX and Windows security models are quite different. Win32 uses the underlying Windows
security model. This results in some key differences between the way Win32 security works and the way
UNIX security works. Some of these differences have already been covered in Chapter 2 in the
Comparison of Windows and UNIX Architectures section. This section covers the differences in the
security model and how you should modify your code to operate in Win32.

The key areas that are addressed here are:

Page 50 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l A comparison of the UNIX and Win32 user and group APIs
l Adding a new group
l Adding a user to a group
l Listing groups
l Adding a user account
l Changing a user's password
l Removing a user account
l Getting user information about all users
l Getting information about a specific user
l Retrieving the current user's user name
l Security functions

UNIX and Win32 User and Group Functions

This section describes the different user and group functions for UNIX and Win32.

The UNIX user and group functions

Table 9 shows user and group management functions that control user and group accounts in a security
database. To link some of the code examples that use these functions, you must add -lcrypt to the gcc
option list.

Table 9. UNIX User and group functions—security

Function Description
Group database functions
endgrent Close database
fgetgrent, fgetgrent_r Get next Group database entry from FILE Stream
getgrent, getgrent_r Get next Group database entry
getgrgid, getgrgid_r Get Group database entry with Group ID
getgrnam, getgrnam_r Get Group database entry with Name
setgrent Rewind database
Supplementary group access list functions
getgroups Get
initgroups Initialize
setgroups Set
User "shadow" database functions
endspent Close database
fgetspent, fgetspent_r Get next User "Shadow" database entry from FILE

Stream
getspent, getspent_r Get next User "Shadow" database entry
getspnam, getspnam_r Get User "Shadow" database entry with Name
setspent Rewind database
User database functions
endpwent Close database
fgetpwent, fgetpwent_r Get next User database entry from FILE Stream
getpw User database "get" function to get passwd entry

from UID

Page 51 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The Win32 user functions

Table 10 shows Win32 user management functions that control a user's account in a security database.
To link these functions in the example code later in this section, you must add Netapi32.lib to the Visual
Studio project link-library list.

Table 10. Win32 User and Group functions—security

User account information is available at the following levels:

l USER_INFO_0
l USER_INFO_1
l USER_INFO_2
l USER_INFO_3
l USER_INFO_4
l USER_INFO_10
l USER_INFO_11
l USER_INFO_20

getpwent, getpwent_r Get next User database entry
getpwnam, getpwnam_r Get User database entry with Name
getpwuid, getpwuid_r Get User database entry with User ID
setpwent Rewind database
User database "Lock/UnLock" functions
lckpwdf "Lock" function
ulckpwdf "UnLock" function
User database "Write" functions
putgrent Write group file entry
putpwent Write password file entry
putspent Write shadow password file entry

Function Description
NetUserAdd Adds a user account and assigns a password and

privilege level.
NetUserChangePassword Changes a user's password for a specified network

server or domain.
NetUserDel Deletes a user account from the server.
NetUserEnum Lists all user accounts on a server.
NetUserGetGroups Returns a list of global group names to which a user

belongs.
NetUserGetInfo Returns information about a particular user account

on a server.
NetUserGetLocalGroups Returns a list of local group names to which a user

belongs.
NetUserSetGroups Sets global group memberships for a specified user

account.
NetUserSetInfo Sets the password and other elements of a user

account.

Page 52 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l USER_INFO_21
l USER_INFO_22
l USER_INFO_23

In addition, the following information levels are valid when you call the NetUserSetInfo
(..\..\..\Originals\mk:@MSITStore:\\dimension\cdrive\Program Files\Microsoft Visual
Studio\MSDN\2001OCT\1033\NETMGMT.CHM::\hh\network\ntlmapi2_0zfz.htm) function:

l USER_INFO_1003
l USER_INFO_1005
l USER_INFO_1006
l USER_INFO_1007
l USER_INFO_1008
l USER_INFO_1009
l USER_INFO_1010
l USER_INFO_1011
l USER_INFO_1012
l USER_INFO_1014
l USER_INFO_1017
l USER_INFO_1020
l USER_INFO_1024
l USER_INFO_1051
l USER_INFO_1052
l USER_INFO_1053

The Win32 group functions

The network management provides functions for both local groups and global groups.

Local group

A local group can contain user accounts or global group accounts from one or more domains. (Global
groups can contain users from only one domain.) A local group shares common privileges and rights
only within its own domain.

The network management local group functions control members of local groups in a way that the
functions can only be called locally on the system on which the local group is defined. On a
Windows NT, Windows 2000 or Windows XP workstation, or on a server that is not a domain
controller, you can use only a local group defined on that system. A local group defined on the primary
domain controller is replicated to all other domain controllers in the domain. Therefore, a local group is
available on all domain controllers within the domain in which it was created.

The local group functions create or delete local groups, and review or adjust the memberships of local
groups. These functions are shown in Table 11.

Table 11. Win32 local group functions

Function Description
NetLocalGroupAdd Creates a local group.
NetLocalGroupAddMembers Adds one or more users or global groups to an

Page 53 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Global group

A global group contains user accounts from one domain that are grouped together under one group
account name. A global group can contain only members (users) from the domain where the global
group is created; it cannot contain local groups or other global groups. A global group is available within
its own domain and within any trusting domain.

The network management group functions control global groups. Table 12 shows these group functions.

Table 12. Win32 network management (global group) functions

Global group account information is available at the following levels:

l GROUP_INFO_0
l GROUP_INFO_1
l GROUP_INFO_2
l GROUP_INFO_3
l GROUP_INFO_1002
l GROUP_INFO_1005

Adding a New Group

existing local group.
NetLocalGroupDel Deletes a local group, removing all existing

members from the group.
NetLocalGroupDelMembers Removes one or more members from an existing

local group
NetLocalGroupEnum Returns information about each local group account

on a server.
NetLocalGroupGetInfo Returns information about a particular local group

account on a server.
NetLocalGroupGetMembers Lists all members of a specified local group.
NetLocalGroupSetInfo Sets general information about a local group.
NetLocalGroupSetMembers Assigns members to a local group.

Function Description
NetGroupAdd Creates a global group.
NetGroupAddUser Adds one user to an existing global group.
NetGroupDel Removes a global group whether or not the group

has any members.
NetGroupDelUser Removes one user name from a global group.
NetGroupEnum Lists all global groups on a server.
NetGroupGetInfo Returns information about a particular global group.
NetGroupGetUsers Lists all members of a particular global group.
NetGroupSetInfo Sets general information about a global group.
NetGroupSetUsers Assigns members to a new global group. Replaces

the members of an existing group.

Page 54 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The following examples illustrate migrating code from UNIX to Windows to add a new group.

UNIX example: adding a new group

This example uses the getgrnam and getgruid functions to verify that a group account and gid does not
already exists before adding a new group account with the putgrent function.

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <grp.h>

int main(int argc, char *argv[])
{
 struct group a_group;
 struct group *ptr_group;

 char gr_name[20];
 char gr_passwd[] = "";
 char *gr_mem[] = {0};

 int i, gid;

 a_group.gr_name = gr_name;
 a_group.gr_passwd = gr_passwd;
 a_group.gr_mem = gr_mem;

 if (argc != 3)
 {
 printf("Usage: %s GroupName GID\n", argv[0]);
 exit(1);
 }

// Call the getpwnam function to check if user exists.
 if(ptr_group = getgrnam (argv[1])) {
 printf("Group already exists\n");
 exit(1);
 }

// Call the getpwuid function to check if User ID exists
 if(ptr_group = getgrgid (gid=(gid_t) atoi(argv[2]))) {
 printf("Group ID already exists\n");
 exit(1);
 }

 ptr_group = &a_group;

 strcpy (ptr_group->gr_name, argv[1]);
 printf ("Group: %s\n", ptr_group->gr_name);

 ptr_group->gr_gid = gid;
 printf ("gid: %d\n", ptr_group->gr_gid);

// Call the putgrent function
 putgrent(ptr_group, fopen ("/etc/group", "a+"));

 exit(0);

Page 55 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

}

Win32 example: adding a new group

This example uses the NetLocalGroupAdd() function to create a local group in the security database.

#ifndef UNICODE
#define UNICODE
#endif

#include <stdio.h>
#include <windows.h>
#include <lm.h>

int wmain(int argc, wchar_t *argv[])
{
 LOCALGROUP_INFO_1 lgi;
 DWORD dwLevel = 1;
 DWORD dwError = 0;
 NET_API_STATUS nStatus;

 if (argc != 3)
 {
 fwprintf(stderr, L"Usage: %s \\\\ServerName GroupName\n",
argv[0]);
 exit(1);
 }

 // Set up the LOCALGROUP_INFO_1 structure.

 lgi.lgrpi1_name = argv[2];
 lgi.lgrpi1_comment = NULL;

 nStatus = NetLocalGroupAdd(argv[1],
 dwLevel,
 (LPBYTE)&lgi,
 &dwError);
 //
 // If the call succeeds, inform the user.
 //
 if (nStatus == NERR_Success)
 fwprintf(stderr, L"Local Group %s has been successfully added
 on %s\n",
 argv[2], argv[1]);
 //
 // Otherwise, print the system error.
 //
 else
 fprintf(stderr, "A system error has occurred: %d\n", nStatus);

 return 0;
}

Adding a User to a Group

The following examples illustrate migrating code from UNIX to Windows to add a user to a group.

Page 56 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

UNIX example: adding a user to a group

This example uses the getgrnam and getpwnam functions to verify that the specified group account
exists, and that the user account to be added exists, before creating a new /etc/group file
(named: /etc/groupx) with the added member to the specified group using a combination of the
fgetgrent and fprintf functions. This program assumes that the super user will be using this program,
and will "manually" copy /etc/groupx to /etc/group after verifying proper update to the group entry.

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <grp.h>
#include <pwd.h>

int main(int argc, char *argv[])
{
 struct group a_group;
 struct group *ptr_group;
 struct passwd *ptr_pswd;

 int i;
 FILE *stream_in, *stream_out;

 if (argc != 3)
 {
 printf("Usage: %s GroupName NewMember\n", argv[0]);
 exit(1);
 }

// Call the getgrnam function to check if group exists.
 if(!(ptr_group = getgrnam (argv[1]))) {
 printf("group does not exist\n");
 exit(1);
 }
// Call the getpwnam function to check if group exists.
 if(!(ptr_pswd = getpwnam (argv[2]))) {
 printf("member to be added does not exist\n");
 exit(1);
 }

 ptr_group = &a_group;

// Scan /etc/group file, create /etc/groupx, with updated group entry
 stream_in = fopen ("/etc/group", "r");
 stream_out = fopen ("/etc/groupx", "w");

 while(ptr_group = fgetgrent(stream_in)) {
 i=0;
 fprintf(stream_out, "%s:%s:%d:", ptr_group->gr_name,\
 ptr_group->gr_passwd, ptr_group->gr_gid);
 while(ptr_group->gr_mem[i] != 0) {
 fprintf(stream_out, "%s,", ptr_group->gr_mem[i]);
 i++;
 }
 if(strcmp(ptr_group->gr_name, argv[1]) == 0)
 fprintf(stream_out, "%s\n", argv[2]);
 else
 fprintf(stream_out, "\n");

Page 57 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 printf("Next Group: %s\n", ptr_group->gr_name);
 }

 fclose (stream_in);
 fclose (stream_out);

 exit(0);
}

Win32 example: adding a user to a group

This example uses the NetLocalGroupAddMembers () function to add members to a local group in the
security database.

#ifndef UNICODE
#define UNICODE
#endif

#include <stdio.h>
#include <windows.h>
#include <lm.h>

int wmain(int argc, wchar_t *argv[])
{
 LOCALGROUP_MEMBERS_INFO_3 lgmi;
 DWORD dwLevel = 3;
 DWORD dwCount = 1;
 NET_API_STATUS nStatus;

 if (argc != 4)
 {
 fwprintf(stderr, L"Usage: %s \\\\ServerName GroupName
 UserName\n", argv[0]);
 exit(1);
 }

 // Set up the LOCALGROUP_MEMBERS_INFO_3 structure.

 lgmi.lgrmi3_domainandname = argv[3];

 nStatus = NetLocalGroupAddMembers(argv[1],
 argv[2],
 dwLevel,
 (LPBYTE)&lgmi,
 dwCount);
 //
 // If the call succeeds, inform the user.
 //
 if (nStatus == NERR_Success)
 fwprintf(stderr, L"User %s has been successfully added to Local
 Group %s on %s\n",
 argv[3], argv[2], argv[1]);
 //
 // Otherwise, print the system error.
 //
 else
 fprintf(stderr, "A system error has occurred: %d\n", nStatus);

Page 58 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 return 0;
}

Listing Groups

The following examples illustrate migrating code to list groups from UNIX to Windows.

UNIX example: listing groups

This example uses the getgroups function to retrieve a list of global groups to which the calling user
belongs.

#include <sys/types.h>
#include <unistd.h>
#include <grp.h>

int main()
{
 struct group *ptr_group;
 gid_t grouplist[100];
 int num;

 num = getgroups (99, grouplist);

 printf("group\tID:\n---------------\n");
 if (num > 0)
 while(num--) {
 ptr_group = getgrgid(grouplist[num]);
 printf("%s\t%d\n", ptr_group->gr_name, grouplist[num]);
 }
 else
 printf("num=%d\n", num);

 exit(0);
}

Win32 example: listing groups

This example uses the NetUserGetGroups() function to retrieve a list of global groups to which a
specified user belongs. You use the NetUserGetLocalGroups() function to get a list of local groups to
which a user belongs.

#ifndef UNICODE
#define UNICODE
#endif

#include <stdio.h>
#include <assert.h>
#include <windows.h>
#include <lm.h>

int wmain(int argc, wchar_t *argv[])
{
 LPGROUP_USERS_INFO_0 pBuf = NULL;
 DWORD dwLevel = 0;

Page 59 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 DWORD dwPrefMaxLen = -1;
 DWORD dwEntriesRead = 0;
 DWORD dwTotalEntries = 0;
 NET_API_STATUS nStatus;

 if (argc != 3)
 {
 fwprintf(stderr, L"Usage: %s \\\\ServerName UserName\n",
argv[0]);
 exit(1);
 }
 //
 // Call the NetUserGetGroups function, specifying level 0.
 //
 nStatus = NetUserGetGroups(argv[1],
 argv[2],
 dwLevel,
 (LPBYTE*)&pBuf,
 dwPrefMaxLen,
 &dwEntriesRead,
 &dwTotalEntries);
 //
 // If the call succeeds,
 //
 if (nStatus == NERR_Success)
 {
 LPGROUP_USERS_INFO_0 pTmpBuf;
 DWORD i;
 DWORD dwTotalCount = 0;

 if ((pTmpBuf = pBuf) != NULL)
 {
 fprintf(stderr, "\nGlobal group(s):\n");
 //
 // Loop through the entries;
 // print the name of the global groups
 // to which the user belongs.
 //
 for (i = 0; i < dwEntriesRead; i++)
 {
 assert(pTmpBuf != NULL);

 if (pTmpBuf == NULL)
 {
 fprintf(stderr, "An access violation has occurred\n");
 break;
 }

 wprintf(L"\t-- %s\n", pTmpBuf->grui0_name);

 pTmpBuf++;
 dwTotalCount++;
 }
 }
 //
 // If all available entries were
 // not enumerated, print the number actually
 // enumerated and the total number available.
 //
 if (dwEntriesRead < dwTotalEntries)

Page 60 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 fprintf(stderr, "\nTotal entries: %d", dwTotalEntries);
 //
 // Otherwise, just print the total.
 //
 printf("\nEntries enumerated: %d\n", dwTotalCount);
 }
 else
 fprintf(stderr, "A system error has occurred: %d\n", nStatus);
 //
 // Free the allocated buffer.
 //
 if (pBuf != NULL)
 NetApiBufferFree(pBuf);

 return 0;
}

Adding a User Account

The following examples illustrate migrating code to add user accounts from UNIX to Windows.

UNIX example: adding a user account

This example uses the getpwnam and getpwuid functions to verify that a user account and uid does not
already exist before adding a new user account with the putpwent function. This program assumes that
a user home directory with the same name has already been created under /home, and does not verify
that this directory exists.

#define _XOPEN_SOURCE
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>

int main(int argc, char *argv[])
{
 struct passwd pswd;
 struct passwd *ptr_pswd;

 char pw_name[20];
 char pw_passwd[30];
 char pw_dir[26];
 char pw_shell[15];

 int uid;

 pswd.pw_name = pw_name;
 pswd.pw_passwd = pw_passwd;
 pswd.pw_dir = pw_dir;
 pswd.pw_shell = pw_shell;

 if (argc != 5)
 {
 printf("Usage: %s UserName Password UID GID\n", argv[0]);
 exit(1);
 }

Page 61 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

// Call the getpwnam function to check if user exists.
 if(ptr_pswd = getpwnam (argv[1])) {
 printf("user already exists\n");
 exit(1);
 }

// Call the getpwuid function to check if User ID exists
 if(ptr_pswd = getpwuid (uid=(uid_t) atoi(argv[3]))) {
 printf("user ID already exists\n");
 exit(1);
 }

 ptr_pswd = &pswd;

 strcpy (ptr_pswd->pw_name, argv[1]);
 printf ("Name: %s\n", ptr_pswd->pw_name);

 strcpy (ptr_pswd->pw_passwd, crypt(argv[2],"az"));

 ptr_pswd->pw_uid = uid;
 printf ("uid: %d\n", ptr_pswd->pw_uid);

 ptr_pswd->pw_gid = (gid_t) atoi(argv[4]);
 printf ("gid: %d\n", ptr_pswd->pw_gid);

 strcpy (ptr_pswd->pw_dir, "/home/");
 strcat (ptr_pswd->pw_dir, argv[1]);
 printf ("Home Dir: %s\n", ptr_pswd->pw_dir);

 strcpy (ptr_pswd->pw_shell, "/bin/bash");
 printf ("Shell: %s\n", ptr_pswd->pw_shell);

// Call the putpwent function
 putpwent(ptr_pswd, fopen ("/etc/passwd", "a+"));

 exit(0);
}

Win32 example: adding a user account

This example uses NetUserAdd() function to add a user account and assigns a password and privilege
level.

#ifndef UNICODE
#define UNICODE
#endif

#include <stdio.h>
#include <windows.h>
#include <lm.h>

int wmain(int argc, wchar_t *argv[])
{
 USER_INFO_1 ui;
 DWORD dwLevel = 1;
 DWORD dwError = 0;
 NET_API_STATUS nStatus;

 if (argc != 3)

Page 62 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 {
 fwprintf(stderr, L"Usage: %s \\\\ServerName UserName\n",
argv[0]);
 exit(1);
 }
 //
 // Set up the USER_INFO_1 structure.
 // USER_PRIV_USER: name identifies a user,
 // rather than an administrator or a guest.
 // UF_SCRIPT: required for LAN Manager 2.0 and
 // Windows NT and later.
 //
 ui.usri1_name = argv[2];
 ui.usri1_password = argv[2];
 ui.usri1_priv = USER_PRIV_USER;
 ui.usri1_home_dir = NULL;
 ui.usri1_comment = NULL;
 ui.usri1_flags = UF_SCRIPT;
 ui.usri1_script_path = NULL;
 //
 // Call the NetUserAdd function, specifying level 1.
 //
 nStatus = NetUserAdd(argv[1],
 dwLevel,
 (LPBYTE)&ui,
 &dwError);
 //
 // If the call succeeds, inform the user.
 //
 if (nStatus == NERR_Success)
 fwprintf(stderr, L"User %s has been successfully added on
%s\n",
 argv[2], argv[1]);
 //
 // Otherwise, print the system error.
 //
 else
 fprintf(stderr, "A system error has occurred: %d\n", nStatus);

 return 0;
}

Changing a User's Password

The following examples illustrate migrating code to change a user's password from UNIX to Windows.

UNIX example: changing a user's password

This example uses the getpwnam function to verify that the user account exists before creating a
new /etc/passwd file (named /etc/passwdx) with the entered password using a combination of the
fgetpwent and fprintf functions. This program assumes that the super user will be using this program,
and will "manually" copy /etc/passwdx to /etc/passwd after verifying proper update to the user entries.

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>

Page 63 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

int main(int argc, char *argv[])
{
 struct passwd pswd;
 struct passwd *ptr_pswd;

 FILE *stream_in, *stream_out;

 if (argc != 3)
 {
 printf("Usage: %s UserName Password\n", argv[0]);
 exit(1);
 }

// Call the getpwnam function to check if user exists.
 if(!(ptr_pswd = getpwnam (argv[1]))) {
 printf("user does not exist\n");
 exit(1);
 }

 ptr_pswd = &pswd;

// Scan /etc/passwd file, create /etc/passwdx, with updated user
 entry
 stream_in = fopen ("/etc/passwd", "r");
 stream_out = fopen ("/etc/passwdx", "w");

 while(ptr_pswd = fgetpwent(stream_in)) {
 if(strcmp(ptr_pswd->pw_name, argv[1]) == 0)
 strcpy (ptr_pswd->pw_passwd, crypt(argv[2],"az"));
 fprintf(stream_out, "%s:%s:%d:%d:%s:%s:%s\n", ptr_pswd-
 >pw_name,\
 ptr_pswd->pw_passwd, ptr_pswd->pw_uid, ptr_pswd-
 >pw_gid,\
 ptr_pswd->pw_gecos, ptr_pswd->pw_dir, ptr_pswd-
 >pw_shell);
 printf("Next Name: %s\n", ptr_pswd->pw_name);
 }

 fclose (stream_in);
 fclose (stream_out);

 exit(0);
}

Win32 example: changing a user's password

This example uses the NetUserChangePassword() function to change a user's password for a specified
network server or domain.

#ifndef UNICODE
#define UNICODE
#endif

#include <stdio.h>
#include <windows.h>
#include <lm.h>

int wmain(int argc, wchar_t *argv[])

Page 64 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

{
 DWORD dwError = 0;
 NET_API_STATUS nStatus;
 //
 // All parameters are required.
 //
 if (argc != 5)
 {
 fwprintf(stderr, L"Usage: %s \\\\ServerName UserName
 OldPassword NewPassword\n", argv[0]);
 exit(1);
 }
 //
 // Call the NetUserChangePassword function.
 //
 nStatus = NetUserChangePassword(argv[1], argv[2], argv[3],
argv[4]);
 //
 // If the call succeeds, inform the user.
 //
 if (nStatus == NERR_Success)
 fwprintf(stderr, L"User password has been changed
 successfully\n");
 //
 // Otherwise, print the system error.
 //
 else
 fprintf(stderr, "A system error has occurred: %d\n", nStatus);

 return 0;
}

Removing a User Account

The following examples illustrate migrating code to remove user accounts from UNIX to Windows.

UNIX example: removing a user account

This example uses the getpwnam function to verify that the user account exists before creating a
new /etc/passwd file (named /etc/passwdx). It does this with the specified user account removed, using a
combination of the fgetpwent and fprintf functions. This program assumes that the super user will be
using this program, and will "manually" copy /etc/passwdx to /etc/passwd after verifying proper update
to the user entries.

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>

int main(int argc, char *argv[])
{
 struct passwd pswd;
 struct passwd *ptr_pswd;

 FILE *stream_in, *stream_out;

Page 65 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 if (argc != 2)
 {
 printf("Usage: %s UserName\n", argv[0]);
 exit(1);
 }

// Call the getpwnam function to check if user exists.
 if(!(ptr_pswd = getpwnam (argv[1]))) {
 printf("user does not exist\n");
 exit(1);
 }

 ptr_pswd = &pswd;

// Scan /etc/passwd file, create /etc/passwdx, with updated user
entry
 stream_in = fopen ("/etc/passwd", "r");
 stream_out = fopen ("/etc/passwdx", "w");

 while(ptr_pswd = fgetpwent(stream_in)) {
 if(strcmp(ptr_pswd->pw_name, argv[1]) != 0)
 fprintf(stream_out, "%s:%s:%d:%d:%s:%s:%s\n", ptr_pswd-
 >pw_name,\
 ptr_pswd->pw_passwd, ptr_pswd->pw_uid, ptr_pswd-
 >pw_gid,\
 ptr_pswd->pw_gecos, ptr_pswd->pw_dir, ptr_pswd-
 >pw_shell);
 printf("Next Name: %s\n", ptr_pswd->pw_name);
 }

 fclose (stream_in);
 fclose (stream_out);

 exit(0);
}

Win32 example: removing a user account

This example uses the NetUserDel() function to delete a user account from a server.

#ifndef UNICODE
#define UNICODE
#endif

#include <stdio.h>
#include <windows.h>
#include <lm.h>

int wmain(int argc, wchar_t *argv[])
{
 DWORD dwError = 0;
 NET_API_STATUS nStatus;
 //
 // All parameters are required.
 //
 if (argc != 3)
 {
 fwprintf(stderr, L"Usage: %s \\\\ServerName UserName\n",
argv[0]);

Page 66 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 exit(1);
 }
 //
 // Call the NetUserDel function to delete the share.
 //
 nStatus = NetUserDel(argv[1], argv[2]);
 //
 // Display the result of the call.
 //
 if (nStatus == NERR_Success)
 fwprintf(stderr, L"User %s has been successfully deleted on
%s\n",
 argv[2], argv[1]);
 else
 fprintf(stderr, "A system error has occurred: %d\n", nStatus);

 return 0;
}

Getting User Information About All Users

The following examples illustrate migrating code to get user information from UNIX to Windows.

UNIX example: getting user information about all users

This example uses the getpwent function to provide information about all available user accounts.

#include <stdio.h>
#include <unistd.h>
#include <pwd.h>

int main()
{
 struct passwd pswd;
 struct passwd *ptr_pswd;

// Scan /etc/passwd file
 while(ptr_pswd = getpwent())
 printf("Account Name: %s\n", ptr_pswd->pw_name);

 exit(0);
}

Win32 example: getting user information about all users

This example uses the NetUserEnum() function to provide information about all the users on a server.

#ifndef UNICODE
#define UNICODE
#endif

#include <stdio.h>
#include <assert.h>
#include <windows.h>
#include <lm.h>

int wmain(int argc, wchar_t *argv[])

Page 67 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

{
 LPUSER_INFO_0 pBuf = NULL;
 LPUSER_INFO_0 pTmpBuf;
 DWORD dwLevel = 0;
 DWORD dwPrefMaxLen = -1;
 DWORD dwEntriesRead = 0;
 DWORD dwTotalEntries = 0;
 DWORD dwResumeHandle = 0;
 DWORD i;
 DWORD dwTotalCount = 0;
 NET_API_STATUS nStatus;
 LPTSTR pszServerName = NULL;

 if (argc > 2)
 {
 fwprintf(stderr, L"Usage: %s [\\\\ServerName]\n", argv[0]);
 exit(1);
 }
 // The server is not the default local computer.
 //
 if (argc == 2)
 pszServerName = argv[1];
 wprintf(L"\nUser account on %s: \n", pszServerName);
 //
 // Call the NetUserEnum function, specifying level 0;
 // enumerate global user account types only.
 //
 do // begin do
 {
 nStatus = NetUserEnum(pszServerName,
 dwLevel,
 FILTER_NORMAL_ACCOUNT, // global users
 (LPBYTE*)&pBuf,
 dwPrefMaxLen,
 &dwEntriesRead,
 &dwTotalEntries,
 &dwResumeHandle);
 //
 // If the call succeeds,
 //
 if ((nStatus == NERR_Success) || (nStatus == ERROR_MORE_DATA))
 {
 if ((pTmpBuf = pBuf) != NULL)
 {
 //
 // Loop through the entries.
 //
 for (i = 0; (i < dwEntriesRead); i++)
 {
 assert(pTmpBuf != NULL);

 if (pTmpBuf == NULL)
 {
 fprintf(stderr, "An access violation has
 occurred\n");
 break;
 }
 //
 // Print the name of the user account.
 //

Page 68 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 wprintf(L"\t-- %s\n", pTmpBuf->usri0_name);

 pTmpBuf++;
 dwTotalCount++;
 }
 }
 }
 //
 // Otherwise, print the system error.
 //
 else
 fprintf(stderr, "A system error has occurred: %d\n",
nStatus);
 //
 // Free the allocated buffer.
 //
 if (pBuf != NULL)
 {
 NetApiBufferFree(pBuf);
 pBuf = NULL;
 }
 }
 // Continue to call NetUserEnum while
 // there are more entries.
 //
 while (nStatus == ERROR_MORE_DATA); // end do
 //
 // Check again for allocated memory.
 //
 if (pBuf != NULL)
 NetApiBufferFree(pBuf);
 //
 // Print the final count of users enumerated.
 //
 fprintf(stderr, "\nTotal of %d entries enumerated\n",
dwTotalCount);

 return 0;
}

Getting Information About a Specific User

The following examples illustrate migrating code from UNIX to Windows to get information about a
specific user account.

UNIX example: getting information about a specific user

This example uses the getpwnam function to obtain the information and output the account information
of a specified user.

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>

int main(int argc, char *argv[])
{

Page 69 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 struct passwd *ptr_pswd;

 int uid;
 if (argc != 2)
 {
 printf("Usage: %s UserName\n", argv[0]);
 exit(1);
 }

// Call the getpwnam function to check if user exists.
 if(!(ptr_pswd = getpwnam (argv[1]))) {
 printf("user does not exist\n");
 exit(1);
 }

 printf ("Name: %s\n", ptr_pswd->pw_name);
 printf ("uid: %d\n", ptr_pswd->pw_uid);
 printf ("gid: %d\n", ptr_pswd->pw_gid);
 printf ("Home Dir: %s\n", ptr_pswd->pw_dir);

 printf ("Shell: %s\n", ptr_pswd->pw_shell);

 exit(0);
}

Win32 example: getting information about a specific user

This example uses NetUserGetInfo() function to retrieve information about a particular user account on
a server. This function returns specific information in USER INFO structure based on different levels.
Please refer to the platform SDK documentation for more details.

#ifndef UNICODE
#define UNICODE
#endif

#include <stdio.h>
#include <windows.h>
#include <lm.h>

int wmain(int argc, wchar_t *argv[])
{
 DWORD dwLevel = 10;
 LPUSER_INFO_10 pBuf = NULL;
 NET_API_STATUS nStatus;

 if (argc != 3)
 {
 fwprintf(stderr, L"Usage: %s \\\\ServerName UserName\n",
argv[0]);
 exit(1);
 }
 //
 // Call the NetUserGetInfo function; specify level 10.
 //
 nStatus = NetUserGetInfo(argv[1],
 argv[2],
 dwLevel,
 (LPBYTE *)&pBuf);

Page 70 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 //
 // If the call succeeds, print the user information.
 //
 if (nStatus == NERR_Success)
 {
 if (pBuf != NULL)
 {
 wprintf(L"\n\tAccount: %s\n", pBuf->usri10_name);
 wprintf(L"\tComment: %s\n", pBuf->usri10_comment);
 wprintf(L"\tUser comment: %s\n", pBuf->usri10_usr_comment);
 wprintf(L"\tFull name: %s\n", pBuf->usri10_full_name);
 }
 }
 // Otherwise, print the system error.
 //
 else
 fprintf(stderr, "A system error has occurred: %d\n", nStatus);
 //
 // Free the allocated memory.
 //
 if (pBuf != NULL)
 NetApiBufferFree(pBuf);

 return 0;
}

Retrieving the Current User's User Name

The following examples illustrate migrating code from UNIX to Windows to retrieve the current user's
user name.

UNIX example: retrieving the current user's username

This example uses the getlogin() function to retrieve the user name of the user currently logged onto the
system.

#include <stdio.h>
#include <unistd.h>

main()
{

// Get and display the user name.
 printf("User name: %s\n", getlogin());

}

Win32 example: retrieving the current user's user name

This example uses GetUserName() Function to retrieve the user name of the current thread. This is the
name of the user currently logged on to the system. The GetUserNameEx() function can be used to
retrieve the user name in a specified format.

#include <windows.h>
#include <stdio.h>
#include <lmcons.h>

Page 71 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

void main()
{
 LPTSTR lpszSystemInfo; // pointer to system information
string
 DWORD cchBuff = 256; // size of user name
 TCHAR tchBuffer[UNLEN + 1]; // buffer for expanded string

 lpszSystemInfo = tchBuffer;

 // Get and display the user name.
 GetUserName(lpszSystemInfo, &cchBuff);

 printf("User name: %s\n", lpszSystemInfo);
}

Security Functions

Windows security enables you to control the ability of a process to access securable objects or to
perform various system administration tasks. Application developers use access control to control access
to securable objects such as files, registry keys and directory service objects.

Table 13 shows the two basic components of the Windows access-control model.

Table 13. Windows access-control model components

When a user logs on to a Windows system, the system authenticates the user's account name and
password. If the log on is successful, the system creates an access token. Every process executed on
behalf of this user will have a copy of this access token. The access token contains security identifiers
(SIDs) that identify the user's account and any group accounts to which the user belongs. The token also
contains a list of the privileges held by the user or the user's groups. The system uses this token to
identify the associated user when a process tries to access a securable object or perform a system
administration task that requires privileges.

An access-control list (ACL) is a list of access-control entries (ACEs). Each ACE in an ACL identifies a
trustee and specifies the access rights allowed, denied or audited for that trustee. The security descriptor
for a securable object can contain two ACLs: a DACL and a SACL.

A DACL (discretionary access-control list) identifies the trustees that are allowed or denied access to a
securable object. When a process tries to access a securable object, the system checks the ACEs in the
object's DACL to determine whether to grant access to it. If the object does not have a DACL, the
system grants full access to everyone. If the object's DACL has no ACEs, the system denies all attempts
to access the object because the DACL does not allow any access rights. The system checks the ACEs in
sequence until it finds one or more ACEs that allow all the requested access rights, or until any of the
requested access rights are denied.

Access-control component Description
Access tokens Access tokens contain information about a logged-

on user.
Security descriptors Security descriptors contain the security information

that protects a securable object.

Page 72 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

A system access-control list (SACL) enables administrators to log attempts to access a secured object.
Each ACE specifies the types of access attempts by a specified trustee that cause the system to generate
a record in the security event log. An ACE in a SACL can generate audit records when an access attempt
fails, when it succeeds or both. In future releases, a SACL can also raise an alarm when an unauthorized
user attempts to gain access to an object.

Table 14 shows the functions that are used with access tokens.

Table 14. Access token functions

UNIX example: using security functions

The following examples illustrate migrating code from UNIX to Windows that uses basic security
functions.

#include <stdio.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <err.h>
#include <pwd.h>

int main()
{
 struct passwd pswd;
 struct stat stat_info;
 uid_t uid;
 int rtn;
 struct passwd * ptr_pswd = &pswd;

// Get the owner UID of the file.
// and Check error code.
 if (stat ("myfile.txt", &stat_info) == -1)
 err(1, NULL);

 uid = stat_info.st_uid;

// Lookup Account UID to get the owner's name.
// and Check error code.
 if(ptr_pswd = getpwuid (uid))
// Print the account name.
 printf("owner: %s\n", ptr_pswd->pw_name);
 else
 err(1, NULL);
}

Win32 example: using security functions

This example uses the GetSecurityInfo() and LookupAccountSid() functions to find and print the
name of the owner of a file. The file exists in the current working directory on the local server.

#include <stdio.h>

Access token Description
TBD

Page 73 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

#include <windows.h>
#include <tchar.h>
#include "accctrl.h"
#include "aclapi.h"

int main(int argc, char **argv)
{
 DWORD dwRtnCode = 0;
 PSID pSidOwner;
 BOOL bRtnBool = TRUE;
 LPTSTR AcctName, DomainName;
 DWORD dwAcctName = 1, dwDomainName = 1;
 SID_NAME_USE eUse = SidTypeUnknown;
 HANDLE hFile;
 PSECURITY_DESCRIPTOR pSD;
 LPVOID lpMsgBuf;

 // Get the handle of the file object.
 hFile = CreateFile(
 "myfile.txt",
 GENERIC_READ,
 FILE_SHARE_READ,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);

 // Check GetLastError for CreateFile error code.
 if (hFile == INVALID_HANDLE_VALUE) {
 FormatMessage(
 FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM |
 FORMAT_MESSAGE_IGNORE_INSERTS,
 NULL,
 GetLastError(),
 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language
 (LPTSTR) &lpMsgBuf,
 0,
 NULL
);

 _tprintf(TEXT("Error message:%s\n"), lpMsgBuf);
 LocalFree(lpMsgBuf);

 return -1;
 }

 // Allocate memory for the SID structure.
 pSidOwner = (PSID)GlobalAlloc(
 GMEM_FIXED,
 sizeof(PSID));

 // Allocate memory for the security descriptor structure.
 pSD = (PSECURITY_DESCRIPTOR)GlobalAlloc(
 GMEM_FIXED,
 sizeof(PSECURITY_DESCRIPTOR));

 // Get the owner SID of the file.
 dwRtnCode = GetSecurityInfo(
 hFile,

Page 74 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 SE_FILE_OBJECT,
 OWNER_SECURITY_INFORMATION,
 &pSidOwner,
 NULL,
 NULL,
 NULL,
 &pSD);

 // Check GetLastError for GetSecurityInfo error condition.
 if (dwRtnCode != ERROR_SUCCESS) {
 DWORD dwErrorCode = 0;

 dwErrorCode = GetLastError();
 _tprintf(TEXT("GetSecurityInfo error = %d\n"),
 dwErrorCode);
 return -1;
 }

 // First call to LookupAccountSid to get the buffer sizes.
 DomainName = NULL;
 AcctName = NULL;
 bRtnBool = LookupAccountSid(
 NULL, // local computer
 pSidOwner,
 AcctName,
 (LPDWORD)&dwAcctName,
 DomainName,
 (LPDWORD)&dwDomainName,
 &eUse);

 // Reallocate memory for the buffers.
 AcctName = (char *)GlobalAlloc(
 GMEM_FIXED,
 dwAcctName);

 // Check GetLastError for GlobalAlloc error condition.
 if (AcctName == NULL) {
 DWORD dwErrorCode = 0;

 dwErrorCode = GetLastError();
 _tprintf(TEXT("GlobalAlloc error = %d\n"),
 dwErrorCode);
 return -1;
 }

 DomainName = (char *)GlobalAlloc(
 GMEM_FIXED,
 dwDomainName);

 // Check GetLastError for GlobalAlloc error condition.
 if (DomainName == NULL) {
 DWORD dwErrorCode = 0;

 dwErrorCode = GetLastError();
 _tprintf(TEXT("GlobalAlloc error = %d\n"), dwErrorCode);
 return -1;

 }

 // Second call to LookupAccountSid to get the account name.

Page 75 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 bRtnBool = LookupAccountSid(
 NULL, // name of local or remote computer
 pSidOwner, // security identifier
 AcctName, // account name buffer
 (LPDWORD)&dwAcctName, // size of account name buffer
 DomainName, // domain name
 (LPDWORD)&dwDomainName, // size of domain name buffer
 &eUse); // SID type

 // Check GetLastError for LookupAccountSid error condition.
 if (bRtnBool == FALSE) {
 DWORD dwErrorCode = 0;

 dwErrorCode = GetLastError();

 if (dwErrorCode == ERROR_NONE_MAPPED)
 _tprintf(TEXT("Account owner not found for specified SID.\n"));
 else
 _tprintf(TEXT("Error in LookupAccountSid.\n"));
 return -1;

 } else if (bRtnBool == TRUE)

 // Print the account name.
 _tprintf(TEXT("Account owner = %s\n"), AcctName);

 return 0;
}

File and Data Access

Every program that runs from the UNIX shell opens three standard files. These files have integer file
descriptors and provide the primary means of communication between the programs; they also exist for
as long as the process runs. You associate other file descriptors with files and devices by using the open
system call. (See Table 15.)

Table 15. UNIX standard file descriptors

In Windows, in a similar manner to UNIX, when a program begins execution, the startup code

File File descriptor Description
Standard input 0 Standard input file provides a way

to send data to a process. By
default, the standard input is read
from the keyboard.

Standard output 1 Standard output file provides a
means for the program to output
data. By default, the standard
output goes to the display.

Standard error 2 Standard error is where the
program reports any errors
occurred during program
execution. By default, the standard
error goes to the display.

Page 76 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

automatically opens three streams:

l Standard input (pointed to by stdin)
l Standard output (pointed to by stdout)
l Standard error (pointed to by stderr)

These streams are directed to the console (keyboard and screen) by default. Use freopen to redirect
stdin, stdout, or stderr to a disk file or a device.

The stdout and stderr streams are flushed whenever they are full or, if you are writing to a character
device, after each library call. If a program terminates abnormally, output buffers may not be flushed,
resulting in loss of data. Use fflush or _flushall to ensure that the buffer associated with a specified file
or all open buffers are flushed to the operating system, which can cache data before writing it to disk.
The commit-to-disk feature ensures that the flushed buffer contents are not lost in the event of a system
failure.

Low-Level File Access

The low-level I/O functions invoke the operating system directly for lower-level operation than that
provided by standard (or stream) I/O. Function calls relating to low-level input and output do not buffer
or format data.

Low-level I/O functions can access the standard streams opened at program startup using the standard
file descriptors. They deal with bytes of information, and this means you are using binary files, not text
files. Instead of file pointers, you use low-level file handles or file descriptors, which give a unique
integer number to identify each file.

UNIX example: writing to standard output

The following sample simply writes to the standard output file descriptor, and if any errors occur, it
writes an error message to the standard error file descriptor.

#include <unistd.h>
int main()
{
 if ((write(1, "Here is some data\n", 18)) != 18)
 write(2, "A write error has occurred on file descriptor 1\n",46);
 exit(0);
}

Win32 example: writing to standard output

The following sample simply writes to the standard output file descriptor, and if any errors occur, it
writes an error message to the standard error file descriptor.

Note Just like in UNIX, the Win32 cmd.exe shell redirects standard error from the
command line with the "2>" operator (without the quotes).

#include <io.h>

void main()
{

Page 77 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 if (write(1, "Here is some data\n", 18) != 18)
 write(2, "A write error has occurred on file descriptor 1\n",
46);
}

UNIX example 1: using standard input and standard output

The following sample simply reads characters from the standard input file descriptor and writes that
information to the standard output file descriptor. If any input/output errors occur, an error message is
output to the standard error file descriptor.

#include <unistd.h>
int main()
{
 char buffer[129];
 int num_read;

 num_read = read(0, buffer, 128);
 if (num_read == -1)2
 write(2, "A read error has occurred\n", 26);
 if ((write(1,buffer,num_read)) != num_read)
 write(2, "A write error has occurred\n",27);
 exit(0);
}

Win32 example 1: using standard input and standard output

The following sample simply reads characters from the standard input file descriptor and writes that
information to the standard output file descriptor. If any input/output errors occur, an error message is
output to the standard error file descriptor.

#include <io.h>

void main()
{
 char buffer[129];
 int num_read;

 num_read = read(0, buffer, 128);
 if (num_read == -1)
 write(2, "A read error has occurred\n", 26);

 if ((write(1, buffer, num_read)) != num_read)
 write(2, "A write error has occurred\n", 27);
}

UNIX example 2: using standard input and standard output

The following sample simply reads up to 1 KB of characters from the input file and writes that
information to the output file. If any input/output errors occur, an error message is output to the standard
error file descriptor for any input or output errors.

#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>

Page 78 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

int main()
{
 char block[1024];
 int in, out;
 int num_read;

 in = open("input_file", O_RDONLY);
 if (in == -1) {
 write(2, "An error has occurred opening the file:
 'input_file'\n", 52);
 exit(1);
 }
 out = open("output_file", O_WRONLY|O_CREAT, S_IRUSR|S_IWUSR);
 if (out == -1) {
 write(2, "An error has occurred opening the file:
 'output_file'\n", 53);
 exit(1);
 }
 while((num_read = read(in,block,sizeof(block))) > 0)
 write(out, block, num_read);

 exit(0);
}

Win32 example 2: using standard input and standard output

The following sample simply reads up to 1 KB of characters from the input file and writes that
information to the output file. If any input/output errors occur, an error message is output to the standard
error file descriptor for any input or output errors.

#include <windows.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <io.h>

void main()
{
 char block[1024];
 int in, out;
 int num_read;

 in = open("input_file", O_RDONLY);
 if (in == -1)
 {
 write(2, "An error has occurred opening the file:
 'input_file'\n", 52);
 exit (1);
 }

 out = open("output_file", O_WRONLY|O_CREAT, S_IREAD|S_IWRITE);
 if (out == -1)
 {
 write(2, "An error has occurred opening the file:
 'output_file'\n", 53);
 exit (1);
 }

 while ((num_read = read(in, block, sizeof(block))) > 0)

Page 79 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 write(out, block, num_read);
}

Standard (Stream) File Access

The standard or stream I/O functions process data in different sizes and formats, from single characters
to large data structures. They also provide buffering, which can improve performance. These routines
affect only buffers created by the run-time library routines, and have no effect on buffers created by the
operating system.

The standard I/O library and its header file stdio.h provide low-level file I/O system calls. This library is
part of ANSI standard C, so they port directly to Windows.

UNIX example 1: using stream file access

The following sample simply reads characters from the input file opened with the standard file I/O
library function fopen(), and writes that information to the output file also opened with fopen(). Then it
uses a loop of fgetc and fputc calls to transfer the contents of "input_file" to "output_file".

#include <stdio.h>

int main()
{
 int c;
 FILE *in, *out;

 in = fopen("input_file","r");
 if (in == NULL) {
 write(2, "An error has occurred opening the file:
 'input_file'\n", 52);
 exit(1);
 }
 out = fopen("output_file","w");
 if (out == NULL) {
 write(2, "An error has occurred opening the file:
 'output_file'\n", 53);
 exit(1);
 }

 while((c = fgetc(in)) != EOF)
 fputc(c,out);

 fclose(in);
 fclose(out);

 exit(0);
}

Win32 example 1: using stream file access

The following sample simply reads characters from the input file opened with the standard file I/O
library function fopen(), and writes that information to the output file also opened with fopen(). Then it
uses a loop of fgetc() and fputc() calls to transfer the contents of "input_file" to "output_file".

#include <windows.h>

Page 80 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

#include <stdio.h>
#include <io.h>

void main()
{
 int c;
 FILE *in, *out;

 in = fopen("input_file", "r");
 if (in == NULL)
 {
 write(2, "An error has occurred opening the file:
 'input_file'\n", 52);
 exit (1);
 }

 out = fopen("output_file", "w");
 if (out == NULL)
 {
 write(2, "An error has occurred opening the file:
 'output_file'\n", 53);
 exit (1);
 }

 while ((c = fgetc(in)) != EOF)
 fputc(c, out);

 fclose(in);
 fclose(out);
}

UNIX example 2: using stream file access

The following sample uses fprintf() to format various data and print it to the file named fprintf.out.

#include <stdio.h>

int main()
{
 FILE *stream;
 int i = 10;
 double fp = 1.5;
 char s[] = "this is a string";
 char c = '\n';

 stream = fopen("fprintf.out", "w");
 fprintf(stream, "%s%c", s, c);
 fprintf(stream, "%d\n", i);
 fprintf(stream, "%f\n", fp);
 fclose(stream);
}

Win32 example 2: using stream file access

The following sample uses fprintf to format various data and print it to the file named fprintf.out.

#include <stdio.h>

Page 81 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

void main()
{
 FILE *stream;
 int i = 10;
 double fp = 1.5;
 char s[] = "this is a string";
 char c = '\n';

 stream = fopen("fprintf.out", "w");
 fprintf(stream, "%s%c", s, c);
 fprintf(stream, "%d\n", i);
 fprintf(stream, "%f\n", fp);
 fclose(stream);
}

ioctl() Calls

The ioctl() function performs a variety of control operations on devices and streams. For non-stream
files, the operations performed by this call are device-specific control operations.

#include <sys/ioctl.h>
#include <stropts.h>

int ioctl(int fildes, int request, /* arg */ …);

In Windows, a subset of the operations on a socket is provided via the ioctlsocket() function. The
ioctlsocket() function supports only the SIOCATMARK command and does not have command
parameter equivalent to the FIOASYNC of ioctl().

Windows ioctlsocket()

The ioctlsocket function controls the I/O mode of a socket.

int ioctlsocket(SOCKET s, long cmd, u_long FAR *argp);

The ioctlsocket function can be used on any socket in any state. It is used to set or retrieve operating
parameters associated with the socket, independent of the protocol and communications subsystem.
Table 16 shows the supported commands to use in the command parameter and their semantics.

Table 16. Ioctlsocket parameters and semantics

Command Description
FIONBIO Use with a nonzero argp parameter to enable the non-

blocking mode of socket s. The argp parameter is zero if
non-blocking is to be disabled. The argp parameter points
to an unsigned long value. When a socket is created, it
operates in blocking mode by default (non-blocking mode
is disabled). This is consistent with BSD sockets.

The WSAAsyncSelect and WSAEventSelect functions
automatically set a socket to non-blocking mode. If
WSAAsyncSelect or WSAEventSelect has been issued on
a socket, then any attempt to use ioctlsocket to set the

Page 82 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

File Control

File Control in UNIX is implemented using the fcntl() function.

#include <unistd.h>
#include <fcntl.h>

int fcntl(int fd, int cmd);
int fcntl(int fd, int cmd, long arg);
int fcntl(int fd, int cmd, struct flock *lock);

The fcntl() function performs one of a number of miscellaneous operations on file descriptors. Table 17
contains the commands and semantics:

socket back to blocking mode will fail with WSAEINVAL.

To set the socket back to blocking mode, an application
must first disable WSAAsyncSelect by calling
WSAAsyncSelect with the lEvent parameter equal to
zero, or disable WSAEventSelect by calling
WSAEventSelect with the lNetworkEvents parameter
equal to zero.

FIONREAD Use to determine the amount of data pending in the
network's input buffer that can be read from socket s. The
argp parameter points to an unsigned long value in which
ioctlsocket stores the result. FIONREAD returns the
amount of data that can be read in a single call to the recv
function, which may not be the same as the total amount of
data queued on the socket. If s is message oriented (for
example, type SOCK_DGRAM), FIONREAD still returns
the amount of pending data in the network buffer;
however, the amount that can actually be read in a single
call to the recv function is limited to the data size written
in the send or sendto function call.

SIOCATMARK Use to determine whether or not all out-of-band (OOB)
data has been read. (See the "Windows Sockets 1.1
Blocking Routines" section and EINPROGRESS for a
discussion on OOB data.) This applies only to a stream-
oriented socket (for example, type SOCK_STREAM) that
has been configured for in-line reception of any OOB data
(SO_OOBINLINE). If no OOB data is waiting to be read,
the operation returns TRUE. Otherwise, it returns FALSE,
and the next recv or recvfrom performed on the socket
will retrieve some or all of the data preceding the mark.
The application should use the SIOCATMARK operation
to determine whether any data remains. If there is any
normal data preceding the urgent (out-of-band) data, it will
be received in order. (A recv or recvfrom never mixex
OOB and normal data in the same call.) The argp
parameter points to an unsigned long value in which
ioctlsocket stores the Boolean result.

Page 83 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Table 17. File control commands and semantics

Command Description
F_DUPFD Find the lowest numbered available file descriptor greater

than or equal to arg and make it be a copy of fd. On
success, the new descriptor is returned.

F_GETFD Read the close-on-exec flag.
F_SETFD Set the close-on-exec flag to the value specified by the

FD_CLOEXEC bit of arg.
F_GETFL Read the descriptor's flags (all flags (as set by open(2)) are

returned).
F_SETFL Set the descriptor's flags to the value specified by arg.

O_APPEND, O_NONBLOCK, and O_ASYNC may be
set; the other flags are unaffected.

F_GETLK, F_SETLK and F_SETLKW These commands are used to manage discretionary file
locks. The third argument lock is a pointer to a struct flock
(that may be overwritten by this call).

F_GETLK Return the flock structure that prevents us from obtaining
the lock, or set the l_type field of the lock to F_UNLCK if
there is no obstruction.

F_SETLK The lock is set (when l_type is F_RDLCK or F_WRLCK)
or cleared (when it is F_UNLCK). If the lock is held by
someone else, this call returns -1 and sets errno to
EACCES or EAGAIN.

F_SETLKW Like F_SETLK, but instead of returning an error, wait for
the lock to be released. If a signal that is to be caught is
received while fcntl is waiting, it is interrupted and (after
the signal handler has returned) returns immediately (with
return value -1 and errno set to EINTR).

F_GETOWN, F_SETOWN, F_GETSIG and
F_SETSIG

These commands are used to manage I/O availability
signals.

F_GETOWN Get the process ID or process group currently receiving
SIGIO and SIGURG signals for events on file descriptor
fd. Process groups are returned as negative values.

F_SETOWN Set the process ID or process group that will receive
SIGIO and SIGURG signals for events on file descriptor
fd. Process groups are specified using negative values.
(F_SETSIG can be used to specify a different signal
instead of SIGIO).

F_GETSIG Get the signal sent when input or output becomes possible.
A value of zero means SIGIO is sent. Any other value
(including SIGIO) is the signal sent instead, and in this
case additional info is available to the signal handler if
installed with SA_SIGINFO.

F_SETSIG Sets the signal sent when input or output becomes possible.
A value of zero means to send the default SIGIO signal.
Any other value (including SIGIO) is the signal to send
instead, and in this case additional info is available to the
signal handler if installed with SASIGINFO.

Page 84 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

In Windows, equivalent functions are available for some of the UNIX fcntl commands, but not for all.

l Use _dup() function for F_DUPFD command.
l Use LockFile(), LockFileEx() and UnLockFile() functions for F_SETLK and F_SETLKW

commands.

UNIX example 1: using fcntl()

The following sample opens the input file and duplicates the file descriptor. It reads the content from the
input file using the duplicate file descriptor and sends it to the standard output. If any input/output errors
occur, an error message is output to the standard error file descriptor for any input or output errors.

#include <unistd.h>
#include <fcntl.h>

int main()
{
 char block[1024];
 int fd, fd2;
 int num_read;

 fd = open("input_file", O_RDONLY);
 if (fd == -1) {
 write(2, "An error has occurred opening the file:
 'input_file'\n", 52);
 exit(1);
 }
 fd2 = fcntl(fd, F_DUPFD, 0);

 while((num_read = read(fd2, block, sizeof(block))) > 0)
 write(2, block, num_read);

 close (fd2);
 close (fd);
 exit(0);
}

Win32 example 1: using fcntl()

The following sample opens the input file and duplicates the file descriptor. It reads the content from the
input file using the duplicate file descriptor and sends it to the standard output. If any input/output errors
occur, an error message is output to the standard error file descriptor for any input or output errors.

#include <windows.h>
#include <io.h>
#include <stdio.h>
#include <fcntl.h>

void main()
{
 char block[1024];
 int fd, fd2;
 int num_read;

 fd = open("input_file", O_RDONLY);
 if (fd == -1)

Page 85 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 {
 write(2, "An error has occurred opening the file:
 'input_file'\n", 52);
 exit (1);
 }

 fd2 = dup(fd);

 while ((num_read = read(fd2, block, sizeof(block))) > 0)
 write(2, block, num_read);

 close(fd2);
 close(fd);
}

UNIX example 2: Using fcntl()

The following sample opens a file, sets the read lock and unlocks it. If any errors occur, an error
message is output to the standard error file descriptor.

#include <unistd.h>
#include <fcntl.h>

int main()
{
 struct flock l;

 int fd = open("/tmp/locktest", O_RDWR|O_CREAT, 0644);
 if (fd < 0)
 {
 perror("file open error");
 exit(1);
 }

 l.l_type = F_RDLCK;
 l.l_whence = SEEK_SET;
 l.l_start = 0;
 l.l_len = 0;

 if (fcntl(fd, F_SETLK, &l) == -1)
 {
 perror("fcntl error-F_RDLCK");
 exit(1);
 }

 l.l_type = F_UNLCK;

 if (fcntl(fd, F_SETLK, &l) == -1)
 {
 perror("fcntl error-F_UNLCK");
 exit(1);
 }

 exit(0);
}

Win32 example 2: using fnctl()

Page 86 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The following sample opens two files, reads the contents of the first file, locks the second file and writes
the contents of the first file, and unlocks the second file. If any errors occur, an error message is output
to the console.

#include <windows.h>
#include <stdio.h>

void main()
{
 HANDLE hFile;
 HANDLE hAppend;
 DWORD dwBytesRead, dwBytesWritten, dwPos;
 char buff[4096];

 // Open the existing file.

 hFile = CreateFile("ONE.TXT", // open ONE.TXT
 GENERIC_READ, // open for reading
 0, // do not share
 NULL, // no security
 OPEN_EXISTING, // existing file only
 FILE_ATTRIBUTE_NORMAL, // normal file
 NULL); // no attr. template

 if (hFile == INVALID_HANDLE_VALUE)
 {
 printf("Could not open ONE.TXT\n"); // process error
 }

 // Open the existing file, or if the file does not exist,
 // create a new file.

 hAppend = CreateFile("TWO.TXT", // open TWO.TXT
 GENERIC_WRITE, // open for writing
 0, // do not share
 NULL, // no security
 OPEN_ALWAYS, // open or create
 FILE_ATTRIBUTE_NORMAL, // normal file
 NULL); // no attr. template

 if (hAppend == INVALID_HANDLE_VALUE)
 {
 printf("Could not open TWO.TXT\n"); // process error
 }

 // Append the first file to the end of the second file.
 // Lock the second file to prevent another process from
 // accessing it while writing to it. Unlock the
 // file when writing is finished.

 do
 {
 if (ReadFile(hFile, buff, 4096, &dwBytesRead, NULL))
 {
 dwPos = SetFilePointer(hAppend, 0, NULL, FILE_END);
 LockFile(hAppend, dwPos, 0, dwPos + dwBytesRead, 0);
 WriteFile(hAppend, buff, dwBytesRead,
 &dwBytesWritten, NULL);
 UnlockFile(hAppend, dwPos, 0, dwPos + dwBytesRead, 0);

Page 87 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 }
 } while (dwBytesRead == 4096);

 // Close both files.

 CloseHandle(hFile);
 CloseHandle(hAppend);
}

Directory Operation

Directory operations involve calling the appropriate functions to traverse a directory hierarchy or to list
the contents of a directory.

Directory scanning

Directory scanning involves traversing a directory hierarchy.

Working directory

UNIX provides the _getcwd(), get_current_dir_name(), and getwd() functions to get the current
working directory.

#include <unistd.h>

char *getcwd(char *buf, size_t size);
char *get_current_dir_name(void);
char *getwd(char *buf);

UNIX example 1: using directory handling functions

This sample prints out the current directory, and then recurses through subdirectories.

#include <unistd.h>
#include <stdio.h>
#include <dirent.h>
#include <string.h>
#include <sys/stat.h>

void ScanDir(char *dir, int indent)
{
 DIR *dp;
 struct dirent *dir_entry;
 struct stat stat_info;

 if((dp = opendir(dir)) == NULL) {
 fprintf(stderr,"cannot open directory: %s\n", dir);
 return;
 }
 chdir(dir);
 while((dir_entry = readdir(dp)) != NULL) {
 lstat(dir_entry->d_name,&stat_info);
 if(S_ISDIR(stat_info.st_mode)) {
 /* Directory, but ignore . and .. */
 if(strcmp(".",dir_entry->d_name) == 0 ||
 strcmp("..",dir_entry->d_name) == 0)

Page 88 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 continue;
 printf("%*s%s/\n",indent,"",dir_entry->d_name);
 /* Recurse at a new indent level */
 ScanDir(dir_entry->d_name,indent+4);
 }
 else printf("%*s%s\n",indent,"",dir_entry->d_name);
 }
 chdir("..");
 closedir(dp);
}

int main(int argc, char* argv[])
{
 char *topdir, defaultdir[2]=".";
 if (argc != 2) {
 printf("Argument not supplied - using current
 directory.\n");
 topdir=defaultdir;
 }
 else
 topdir=argv[1];
 printf("Directory scan of %s\n",topdir);
 ScanDir(topdir,0);
 printf("done.\n");

 exit(0);
}

Win32 example 1: using directory handling functions

This sample prints out the current directory, and then recurses through subdirectories. It uses the
FindFirstFile(), FindNextFile(), and FindClose() Win32 API functions.

#include <windows.h>
#include <stdio.h>

void ScanDir(char *dirname, int indent)
{
 BOOL fFinished;
 HANDLE hList;
 TCHAR szDir[MAX_PATH+1];
 TCHAR szSubDir[MAX_PATH+1];
 WIN32_FIND_DATA FileData;

 // Get the proper directory path
 sprintf(szDir, "%s*", dirname);

 // Get the first file
 hList = FindFirstFile(szDir, &FileData);
 if (hList == INVALID_HANDLE_VALUE)
 {
 printf("No files found\n\n");
 }
 else
 {
 // Traverse through the directory structure
 fFinished = FALSE;
 while (!fFinished)
 {

Page 89 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 // Check the object is a directory or not
 if (FileData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)
 {
 if ((strcmp(FileData.cFileName, ".") != 0) &&
(strcmp(FileData.cFileName, "..") != 0))
 {
 printf("%*s%s\\\n", indent, "",
 FileData.cFileName);

 // Get the full path for sub directory
 sprintf(szSubDir, "%s\\%s", dirname,
 FileData.cFileName);

 ScanDir(szSubDir, indent + 4);
 }
 }
 else
 printf("%*s%s\n", indent, "", FileData.cFileName);

 if (!FindNextFile(hList, &FileData))
 {
 if (GetLastError() == ERROR_NO_MORE_FILES)
 {
 fFinished = TRUE;
 }
 }
 }
 }

 FindClose(hList);
}

void main(int argc, char *argv[])
{
 char *pszInputPath;
 char pwd[2] = ".";

 if (argc < 2)
 {
 printf("Argument not supplied - using current directory.\n");
 pszInputPath = pwd;
 }
 else
 {
 pszInputPath = argv[1];
 printf("Input Path: %s\n\n", pszInputPath);
 }

 ScanDir(pszInputPath, 0);

 printf("\ndone.\n");
}

UNIX example 2: using directory handling functions

This sample prints out the current working directory using the getcwd() function.

#include <unistd.h>

Page 90 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

#include <stdio.h>

int main()
{
 char *cwd;
 char buffer[129];

 if ((cwd = getcwd(buffer, 128)) == NULL)
 {
 perror("Current working directory-getcwd() failed");
 exit(2);
 }

 printf("Current working directory: %s\n", cwd);

 exit(0);
}

Win32 example 2: using directory handling functions

This sample prints out the current working directory using the _getcwd() function. This function gets the
full path of the current working directory for the default drive. It returns a string that represents the path
of the current working directory. If the current working directory is the root, the string ends with a
backslash (\). If the current working directory is a directory other than the root, the string ends with the
directory name and not with a backslash.

#include <direct.h>
#include <stdlib.h>
#include <stdio.h>

void main(void)
{
 char buffer[_MAX_PATH];

 /* Get the current working directory: */
 if(_getcwd(buffer, _MAX_PATH) == NULL)
 perror("_getcwd error");
 else
 printf("%s\n", buffer);
}

UNIX example 3: using directory handling functions

This sample prints out the current working directory using the get_current_dir_name() function.

#include <unistd.h>
#include <stdio.h>

int main()
{
 char *cwd;

 cwd = (char *)get_current_dir_name();

 printf("Current working directory: %s\n", cwd);

 exit(0);

Page 91 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

}

Win32 example 3: using directory handling functions

This sample prints out the current working directory using the GetCurrentDirectory() Win32 API
function.

#include <windows.h>
#include <stdio.h>

void main()
{
 DWORD cchCurDir;
 LPTSTR lpszCurDir;
 TCHAR tchBuffer[MAX_PATH + 1];
 DWORD nSize;

 lpszCurDir = tchBuffer;
 cchCurDir = MAX_PATH;

 nSize = GetCurrentDirectory(cchCurDir, lpszCurDir);

 printf("Current Directory is : %s\n", lpszCurDir);
}

Interprocess Communication

Like UNIX, Windows has various forms of interprocess communication (IPC). The forms that are most
familiar to UNIX developers are:

l Process pipes
l Named pipes
l Message queues
l Sockets
l Memory-mapped files
l Shared memory

Windows supports implementations of five of these (that is, all except Message Queues). For further
details see the "Microsoft Message Queues" section.

In addition to these there are two forms of IPC that are not part of the Win32 API. These are Message
Queuing (also known as MSMQ) and COM+.

This section looks at how you convert UNIX code that uses the different forms of IPC. It also introduces
new methods of IPC that are not available in UNIX, but may provide you with a better solution for your
application's interprocess communication. The subject of sockets has been left until the next section.

Process Pipes

Process pipes are supported in Win32 by using the standard C runtime library. As discussed in the
following sections, they are largely equivalent to process pipes in UNIX.

Page 92 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

High-level popen call

Three UNIX examples are considered in this section, and a slightly modified Win32 version of each has
also been provided. Note that this text assumes the presence of the Uname.exe executable program on
the Windows-based system. If your system does not contain this executable, these samples will not work
and you will need to modify them to use an equivalent utility.

In the first example of process pipes, a process called uname is executed and passes the output of this
process to standard output. As you review these examples, notice that the differences between the UNIX
and Win32 implementations are the header files that are required and the function names for popen and
pclose. The names of these functions in Win32 are preceded by an underscore. The function syntax is
the same and the behavior is largely compatible.

UNIX example: process pipes

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 FILE *read_fp;
 char buffer[BUFSIZ + 1];
 int chars_read;
 memset(buffer, '\0', sizeof(buffer));
 read_fp = (FILE *) popen("uname -a", "r");
 if (read_fp != NULL) {
 chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
 if (chars_read > 0) {
 printf("Output is:\n%s\n", buffer);
 }
 pclose(read_fp);
 exit(EXIT_SUCCESS);
 }
 exit(EXIT_FAILURE);
}

Win32 example: process pipes

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void main()
{
 FILE *read_fp;
 char buffer[BUFSIZ + 1];
 size_t chars_read;
 memset(buffer, '\0', sizeof(buffer));
 read_fp = (FILE *)_popen("uname -a", "r");
 if (read_fp != NULL) {
 chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
 if (chars_read > 0) {
 printf("Output is:\n%s\n", buffer);

Page 93 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 }
 _pclose(read_fp);
 exit(EXIT_SUCCESS);
 }
 exit(EXIT_FAILURE);
}

In the second example of process pipes, the code sends data into the Od.exe command. You need to
have the Od.exe command installed for these examples to work. The Od.exe command converts binary
data into octal format. The output from Od.exe goes to the console. Again, notice that the only
difference between the two solutions is in the required header files and the underscore preceding the
function names.

Second UNIX example: process pipes

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{
 FILE *write_fp;
 char buffer[BUFSIZ + 1];

 sprintf(buffer, "This is counting words");
 write_fp = (FILE *) popen("wc -w", "w");
 if (write_fp != NULL) {
 printf("This string: '%s' has this many words:\n", buffer);
 fwrite(buffer, sizeof(char), strlen(buffer), write_fp);
 pclose(write_fp);
 exit(EXIT_SUCCESS);
 }
 exit(EXIT_FAILURE);
}

Second Windows example: process pipes

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>

void main()
{
 FILE *write_fp;
 char buffer[BUFSIZ + 1];

 sprintf(buffer, "This is counting words");
 write_fp = _popen("wc -w", "w");
 if (write_fp != NULL) {
 printf("This string: '%s' has this many words:\n", buffer);
 fwrite(buffer, sizeof(char), strlen(buffer), write_fp);
 _pclose(write_fp);
 exit(EXIT_SUCCESS);
 }
 exit(EXIT_FAILURE);
}

Page 94 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

To clarify the coding differences between UNIX and Win32, an example of process pipes has been
included in Appendix D: Process Pipes.

Low-level pipe call

This section demonstrates an example of how you should convert code that uses pipes to communicate
between two parts of an application using the pipe function call. The example below demonstrates how
you can write to one end of the pipe (fd[1]) and read from the other (fd[0]). As you might expect from
the previous examples, the differences between the UNIX and the Win32 implementations are the
header files required and the underscore that precedes the pipe function. In this case, however, an
additional modification has to be made before the solution will work when using Windows. If you look
at the online documentation for pipe, you'll notice that it requires two additional arguments. Providing
these arguments specifies the amount of memory to be used as a buffer for the pipe, as well as the mode
of the pipe (O_TEXT or O_BINARY).

UNIX example: low-level pipe call

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 int data_out, data_in, file_pipes[2];
 const char data[] = "ABCDE";
 char buffer[BUFSIZ + 1];

 memset(buffer, '\0', sizeof(buffer));
 if (pipe(file_pipes) == 0) {
 data_out = write(file_pipes[1], data, strlen(data));
 printf("Wrote %d bytes\n", data_out);
 data_in = read(file_pipes[0], buffer, BUFSIZ);
 printf("Read %d bytes: %s\n", data_in, buffer);
 exit(EXIT_SUCCESS);
 }
 exit(EXIT_FAILURE);
}

Windows example: low-level pipe call

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#include <process.h>

void main()
{
 size_t data_out, data_in;
 int file_pipes[2];
 const char data[] = "ABCDE";
 char buffer[BUFSIZ + 1];

 memset(buffer, '\0', sizeof(buffer));

Page 95 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 if (_pipe(file_pipes, 32, O_BINARY) == 0) {
 data_out = write(file_pipes[1], data, strlen(data));
 printf("Wrote %d bytes\n", data_out);
 data_in = read(file_pipes[0], buffer, BUFSIZ);
 printf("Read %d bytes: %s\n", data_in, buffer);
 exit(EXIT_SUCCESS);
 }
 exit(EXIT_FAILURE);
}

More pipes examples

To help you understand the changes needed in applications using pipes for interprocess communications
two more examples are included in the appendixes. These are:

l Appendix E: Pipes Across a Process
l Appendix F: Pipes Used as Standard Input/Output

Named Pipes (FIFOs)

Process pipes were covered in the previous section. In this section, a few examples of named pipes are
shown. These are sometimes referred to as first-in-first-out (FIFO).

Interprocess communication with named pipes

In order to show how you can convert code using FIFO from UNIX to Windows, a simple example that
creates a named pipe is shown. This example uses minimal security restrictions for simplicity. The
example uses the mkfifo function in UNIX and the CreateNamedPipe function when using Win32.
There are considerable differences between these two functions. Both functions have the same purpose,
however, in that the CreateNamedPipe function offers a greater degree of control over the
configuration of the pipe. The details are beyond the scope of this guide, but you can find the links for
CreateNamedPipe on the MSDN Web site.

The examples can be seen in full in the following appendixes:

l Appendix H: Creating a Named Pipe
l Appendix I: Opening a FIFO
l Appendix J: Interprocess Communication with FIFOs

Message Queues

Microsoft Win32 doesn't support message queues as standard. If you want to use message queuing in
your application, you should use Microsoft Message Queuing (also known as MSMQ). Message
Queuing is covered comprehensively in other Microsoft documentation and it is therefore only briefly
described here.

Note For more information on Message Queuing, see What's new in Windows XP?.

Message Queuing technology enables applications running at different times to communicate across
heterogeneous networks and systems that may be temporarily offline. Applications send messages to
queues and read messages from queues. Message Queuing provides guaranteed message delivery,

Page 96 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

efficient routing, security and priority-based messaging. It can be used to implement solutions for both
asynchronous and synchronous scenarios requiring high performance.

Sockets and Networking

Windows Sockets 2 uses the sockets paradigm that was first popularized by Berkeley Software
Distribution (BSD) UNIX. It was later adapted for Microsoft Windows in Windows Sockets 1.1.

One of the primary goals of Winsock has been to provide a protocol-independent interface fully capable
of supporting emerging networking capabilities, such as real-time multimedia communications.

Winsock is an interface, not a protocol. As an interface, it is used to discover and utilize the
communications capabilities of any number of underlying transport protocols. Because it is not a
protocol, it does not in any way affect the bits on the wire, and does not need to be utilized on both ends
of a communications link.

Windows Sockets programming previously centered on TCP/IP. Some of the programming practices
that worked with TCP/IP do not work with every protocol. As a result, the Winsock API added new
functions where necessary to handle several protocols.

Winsock has changed its architecture to provide easier access to multiple transport protocols. Following
the Windows Open System Architecture (WOSA) model, Winsock now defines a standard service
provider interface (SPI) between the application-programming interface (API), with its functions
exported from Ws2_32.dll and the protocol stacks. Consequently, Winsock support is not limited to
TCP/IP protocol stacks as is the case for Windows Sockets 1.1. For more information, see the discussion
of "Windows Sockets 2 Architecture" in Microsoft Visual Studio.

There are new challenges in developing Windows Sockets 2 applications. When sockets only supported
TCP/IP, a developer could create an application that supported only two socket types: connectionless
and connection-oriented. Connectionless protocols used SOCK_DGRAM sockets and connection-
oriented protocols used SOCK_STREAM sockets. These are just two of the many new socket types.
Additionally, developers can no longer rely on socket type to describe all the essential attributes of a
transport protocol.

Sockets are not part of the Win32 library. You'll need to consult the platform SDK for detailed
information about the WinSock API's. The online help for the platform SDK contains complete samples
that demonstrate how to implement socket-based client and server applications. For an in-depth
comparison between UNIX sockets and WinSock, refer to the discussion of Socket Programming
Considerations in the Microsoft Platform SDK.

The Process Environment

The process environment includes several key elements, which are explained here. The notable
differences between these elements in Windows are also described briefly. This section only discusses
POSIX.

Environment Variables

Every process has an environment block associated with it. An environment block is a block of memory

Page 97 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

allocated within the process's address space. Each block contains a set of name value pairs. Both UNIX
and Windows support process environment blocks. The particular differences may vary depending on
what supplier and version of UNIX you are dealing with. For information you can use to conduct your
own comparison, see the MSDN article, Changing Environment Variables.

A summary of the notable differences between environment variables in Win32 and POSIX is also
provided.

Differences between POSIX and Win32 environment variables

Win32 supports an ANSI version of the environment functions as well as a Unicode variant. The
Unicode variants are preceded by a _w prefix. Using the _w prefix in your application helps to ensure
that the application is linked with the correct variant when compiled with _UNICODE or _MBCS
preprocessor strings. In addition to the ANSI functions putenv and getenv, Win32 also supports the
GetEnvironmentVariable, ExpandEnvironmentStrings, and SetEnvironmentVariable functions.
This example only shows the ANSI functions. Using the ANSI functions provides you with the simplest
method of converting your code from UNIX to Win32.

A simple example of accessing the environment block is included below. This is an example that works
equally well in POSIX and Win32.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
 char *var, *value;

 if(argc == 1 || argc > 3) {
 fprintf(stderr,"usage: environ var [value]\n");
 exit(1);
 }
 var = argv[1];
 value = getenv(var);
 if(value)
 printf("Variable %s has value %s\n", var, value);
 else
 printf("Variable %s has no value\n", var);

 if(argc == 3) {
 char *string;
 value = argv[2];
 string = (char *)malloc(strlen(var)+strlen(value)+2);
 if(!string) {
 fprintf(stderr,"out of memory\n");
 exit(1);
 }
 strcpy(string,var);
 strcat(string,"=");
 strcat(string,value);
 printf("Calling putenv with: %s\n",string);
 if(putenv(string) != 0) {
 fprintf(stderr,"putenv failed\n");
 free(string);
 exit(1);

Page 98 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 }

 value = getenv(var);
 if(value)
 printf("New value of %s is %s\n", var, value);
 else
 printf("New value of %s is null??\n", var);
 }
 exit(0);
 }

Temporary Files

Both UNIX and Win32 support functions that create temporary files. The example below works equally
well in UNIX and Win32; no modifications are required.

The tmpnam() function returns a pointer to a temporary file name. _tempname() does this as well, but
you can also use it to specify the directory and file name prefix.

The following is an example:

#include <stdlib.h>
#include <stdio.h>

int main()
{
 char tmpname[L_tmpnam];
 char *filename;
 FILE *tmpfp;

 filename = tmpnam(tmpname);

 printf("Temporary file name is: %s\n", filename);

 tmpfp = tmpfile();
 if(tmpfp)
 {
 printf("Opened a temporary file OK\n");
 exit(1);
 }
 else
 {
 perror("tmpfile");
 exit(0);
 }
}

Computer Information

At times, it is necessary to obtain information about a computer. This is particularly important when an
application is designed to support multiple users or different types of hardware and operating systems.
Some of the pieces of information that applications require are:

l The hostname
l The operating system name

Page 99 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l The network name of the computer
l The release level of the operating system
l The version number of the operating system
l The hardware platform name

In UNIX, you would use a combination of gethostname and uname functions to obtain this
information. When using Windows, you have the option of using gethostname, but uname is not
available as standard in the Win32 API. It is possible to add uname using a POSIX layer. Applications
that use this function need to be rewritten to use a different set of services.

The Platform SDK has functionality to obtain the similar set of information provide by the uname
function. The Platform SDK mappings are covered in this text, but it is recommended that you consider
using the Windows Management Instrumentation (WMI) API. The WMI interface is a superset to the
Win32API for obtaining information about the computer. It is highly extensible and supports not only
static information about a platform, but also dynamic information such as configuration and
performance data. Another source to consider is the Active Directory Services Interface (ADSI) a COM
interface that facilitates access to information stored in Microsoft Active Directory® directory-service
database for the enterprise. Both of these interfaces represent the preferred mechanism for gathering
information on Microsoft Windows 2000 and later computers and networks.

For a complete list of the system-information functions provided by the platform SDK, you can refer to
the System Information Functions in the online platform SDK documentation. Two functions that are
not used in the following Win32 example, but are also useful, are GetVersionEx and VerifyVersionInfo.

UNIX example: using system information

#include <unistd.h>
#include <stdio.h>
#include <sys/utsname.h>

int main()
{
 char computer[256];
 struct utsname uts;

 if(gethostname(computer, 255) != 0 || uname(&uts) < 0) {
 fprintf(stderr, "Could not get host information\n");
 exit(1);
 }

 printf("Computer host name is %s\n", computer);
 printf("System is %s on %s hardware\n", uts.sysname,
 uts.machine);
 printf("Nodename is %s\n", uts.nodename);
 printf("Version is %s, %s\n", uts.release, uts.version);
 exit(0);
}

Windows example: using system information

#define _WIN32_WINNT 0X0500
#include <windows.h>
#include <stdlib.h>
#include <stdio.h>

Page 100 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

void errabt(char *msg)
{
 fprintf(stderr, msg); // use GetLastError for more detailed
info.
 exit(1);
}

void main()
{
 DWORD nSize= 255;
 char computer[256];
 char nodename[256];
 SYSTEM_INFO siSysInfo; // Struct for hardware info
 OSVERSIONINFO siVerInfo; // Struct for version info

 GetSystemInfo(&siSysInfo); // Get hardware OEM

 // Get major and minor number
 ZeroMemory(&siVerInfo, sizeof(OSVERSIONINFO));
 siVerInfo.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
 if (!GetVersionEx((OSVERSIONINFO *) &siVerInfo))
 errabt("Could not get OS Version info\n");

 nSize = 255;
 if (GetComputerNameEx(ComputerNameNetBIOS, computer, &nSize) ==
FALSE)
 errabt("Could not get NETBIOS name of computer\n");

 nSize = 255;
 if (GetComputerNameEx(ComputerNameDnsFullyQualified, nodename,
 &nSize) == FALSE)
 errabt("Could not get FQDNS Name of computer\n");

 printf("Computer host name is %s\n", computer);
 printf("System is %u on %u hardware\n",
 siVerInfo.dwMajorVersion,siSysInfo.dwProcessorType);
 printf("Nodename is %s\n", nodename);
 printf("Version is %d.%d %s (Build %d)\n",
 siVerInfo.dwMajorVersion,
 siVerInfo.dwMinorVersion,
 siVerInfo.szCSDVersion,
 siVerInfo.dwBuildNumber & 0xFFFF);
 exit(0);
}

Logging System Messages

Logging diagnostic messages in UNIX, as in the following example, is carried out by writing formatted
output to the system logger. The message is written to system log files such as USERS, or forwarded to
the appropriate computer. If log daemon process is not running, the log information may be written to a
standard log file such as /var/adm/log/logger.

The daemon syslogd in UNIX contains numerous levels of logged information, as can be seen in Table
18, below:

Table 18. UNIX logging system messages

Page 101 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

In contrast, the Windows Event Log also supports logging levels as can be seen in Table 19.

Table 19. Windows event logging messages

Priority Description
LOG_EMERG A panic condition
LOG_ALERT A condition that should be corrected immediately
LOG_CRIT Critical conditions such as hard device errors
LOG_ERR Errors
LOG_WARNING Warnings
LOG_NOTICE Non error related conditions
LOG_INFO Informational messages
LOG_DEBUG Messages intended for debug purposes

Priority Description
EVENTLOG_SUCCESS Information events indicate infrequent but

significant successful operations. For example, when
Microsoft SQL Server™ successfully loads, it may
be appropriate to log an information event stating
that "SQL Server has started." Note that while this is
appropriate behavior for major server services, it is
generally inappropriate for a desktop application
(Microsoft Excel, for example) to log an event each
time it starts.

EVENTLOG_ERROR_TYPE Error events indicate significant problems that the
user should know about. Error events usually
indicate a loss of functionality or data. For example,
if a service cannot be loaded as the system boots, it
can log an error event.

EVENTLOG_WARNING_TYPE Warning events indicate problems that are not
immediately significant, but that may indicate
conditions that could cause future problems.
Resource consumption is a good candidate for a
warning event. For example, an application can log a
warning event if disk space is low. If an application
can recover from an event without loss of
functionality or data, it will generally classify the
event as a warning event.

EVENTLOG_INFORMATION_TYPE Information events indicate infrequent but
significant successful operations. For example, when
Microsoft SQL Server successfully loads, it may be
appropriate to log an information event stating that
"SQL Server has started." Note that while this is
appropriate behavior for major server services, it is
generally inappropriate for a desktop application
(Microsoft Excel, for example) to log an event each
time it starts.

EVENTLOG_AUDIT_SUCCESS Success audit events are security events that occur
when an audited access attempt is successful. For

Page 102 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

As you may have observed, the Windows event logging mechanism supports a smaller selection of event
priorities. You can augment the priority status of event messages by including category information and
binary data in the event log. This additional event information is part of the Win32 example below.

System logging in UNIX

#include <syslog.h>
#include <stdio.h>

int main()
{
 FILE *fp;

 fp = fopen("Bad_File_Name","r");
 if(!fp)
 syslog(LOG_INFO|LOG_USER,"error - %m\n");
 exit(0);
}

On a "typically" configured Linux system, this message would be logged to /var/log/messages, on a
Solaris system to /var/adm/messages, and on Interix (when syslogd in running)
to /var/adm/log/messages. Consult the /etc/syslog.conf file for more specific information, specifically a
*.info entry will specify the file where the above message will be logged.

System logging in Win32

#include <windows.h>
#include <stdlib.h>

void main()
{
 HANDLE h;
 LPSTR mstr = "This is an error from my sample app.";

 h = RegisterEventSource(NULL, // uses local computer
 TEXT("BILLSamplApp")); // source name
 if (h == NULL)
 exit(1);

 ReportEvent(h, // event log handle
 EVENTLOG_ERROR_TYPE, // event type
 0, // category zero
 0, // event identifier
 NULL, // no user security identifier
 1, // one substitution string
 0, // no data
 (LPCSTR*)&mstr, // pointer to string array
 NULL); // pointer to data

example, a successful logon attempt is a successful
audit event.

EVENTLOG_AUDIT_FAILURE Failure audit events are security events that occur
when an audited access attempt fails. For example, a
failed attempt to open a file is a failure audit event.

Page 103 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 DeregisterEventSource(h);
 exit(0);
}

In the above example, the source name to the RegisterEventSource call is not available in the system
registry. As a result, you will not see valid mapping or lookup data when you view the event log with the
event Viewer. After running this sample, Eventvwr.exe should yield something similar to Figure 9.2.

Figure 2. Windows Event Viewer

Double-clicking the error line opens a detailed view of the event (see Figure 9.3).

Figure 3. Details of an Event in Windows Event Viewer

The preceding example is a very simple example of generating log information and posting it to the
Windows Event log. A complete application would use more of the Platform SDK facilities to create an

Page 104 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

application entry in the registry or perhaps create an entirely separate event log file. For a complete
dissertation on the details and complexities of event logging in Windows, refer to Event Logging on the
MSDN® Web site.

Multiprocessor Considerations

Computationally intensive tasks are characterized by intensive processor usage with relatively few I/O
operations. The ongoing challenge with these applications is to improve the performance. You can do
this by getting a faster computer, choosing a more efficient algorithm, improving the implementation or
by using more processors. Improving the performance is accomplished by tuning techniques, which are
covered in the Using the Tools section of Chapter 7. Utilizing more processors can mean taking
advantage of a symmetric multiprocessor (SMP) computer or by using distributed computing with
multiple networked computers. This section looks at these techniques and how to port UNIX
implementations to Win32.

Process and Thread Solutions

How to take advantage of symmetric multiprocessors is discussed in this section. On a multiprocessor
UNIX system, the typical approach is to spawn several processes to run on each of the available
processors. Each processor can run one process simultaneously with all the other processors so you
achieve true parallelism. The technique usually employed is to have an administrative parent process
that starts a computational child process for each available processor.

The other technique for exploiting SMP hardware is to use POSIX threads on UNIX releases that
support them. The details of converting POSIX threads to Windows were covered earlier in this chapter
in the preceding "Threads" section. If your computationally intensive application already uses POSIX
threads for parallelism, you can use the porting techniques covered there.

The classic parent process code on UNIX will call fork() to create a child process for each processor and
wait for the children to finish computing. Multiple processes and maintaining a parent-child relationship
on Windows is demonstrated here. The code shown in the preceding "Waiting for a Spawned Process"
section is extended below to create multiple children:

#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>
#define MAX_PROCS 4

int main()
{
 pid_t pid;
 pid_t children[MAX_PROCS];
 int child_running[MAX_PROCS];
 int tstat, ii, running;

 for (ii = 0; ii < MAX_PROCS; ++ii)
 {
 pid = fork();
 switch(pid)
 {
 case -1:
 perror("fork failed");

Page 105 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 child_running[ii] = 0;
 break;
 case 0:
 printf("I'm child #%d\n", ii);
 exit(0);
 default:
 children[ii] = pid;
 child_running[ii] = 1;
 break;
 }
 }

// wait for children to finish
 running = MAX_PROCS;
 while (running) {
 pid = wait(&tstat);
 for (ii = 0; ii < MAX_PROCS; ++ii) {
// determine which child
 if (pid == children[ii]) {
// child done
 child_running [ii] = 0;
 running--;
 printf("child #%d finished\n", ii);
 }
 }
 }
 exit(0);
}

The first problem in porting this type of code to Win32 is to do something with the fork() call. Recall
from the previous sections on "Process" code migration that Windows starts processes with the
CreateProcess call, which starts a new process and the application running in it. This combines both the
fork() and the exec() calls.

The child process must have some way to communicate with the parent to get the data it needs to work
with, to update status, or to return results. There are several ways this can be done. If the child process
continues with the same application, the data will probably already be set up in global variables. If the
child executes a different application, the data may be transferred by using pipes, message queues,
shared memory or even files. To keep the following example uncomplicated, the parent application
passes all the required data by using the environment set up for each child. This data is used to connect
to common events that allow the parent to signal the children to perform an action, or exit.

Winforks Example

The Winforks.exe example follows the UNIX program outlined above. The parent creates a number of
child processes that do the parts of some jobs in parallel. The parent waits for the child processes to exit.

The parent passes the data necessary for the child to execute in the environment set up for the child. The
environments are created from scratch by the parent and none of the existing environment is copied.
This technique can be used to pass file names, flags, and other small amounts of data to the child
processes. However, this can only be used to pass data to the child and cannot be used to retrieve data
from the child. The details of passing the results back are not shown here, but if the initial data input is
from a file then the output file could also be specified to the child and retained by the parent.

This program also handles error indications from the child processes and stops those that are still

Page 106 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

executing on error. In Windows, killing a process is immediate, and the process is not informed of the
action so it cannot perform any cleanup operations. To allow the child process a chance to clean up and
close any resources it is using, the parent passes the name of an exit event object to each child. If the
child detects this exit event, it can clean up and stop gracefully.

This sample has three files. The first is a shared include file, Both.h, that contains the names of the
environment variables that the parent sets and the child reads. The child process code, ChildExe.c,
contains only a main() function, which gets the initialization data from the environment and loops until
it is done.

The parent process file, WinForks.c, contains these definitions and functions:

l A child process information structure to hold the child process handle, exit event, and other
information.

l A main() function that creates the child processes and waits for them to exit.
l A ChildStart function to start a child process. This takes the place of the UNIX fork() call. This

function creates the environment passed to the child and the exit event. Finally it sets up the
information necessary to start the child and calls CreateProcess.

l A ChildCleanup function to release resources when a child exits.
l A function to stop a child when an error occurs.

Winforks example code is shown in Appendix K.

Common Variations

If the application is using fork() to create multiple copies of itself (that is, if the child process does not
exec() to run another program), there are two completely different methods to approach the migration.
The first is to continue to use multiple processes and use shared memory to allow the child processes to
access the parent's data. This works if the application is using the technique where global memory has
already been set up for the child processes to access. Shared memory in Windows is clear-cut and was
covered in the Shared Memory section of this chapter.

The second and preferred solution where an application is using fork() is to create copies of itself is to
convert the program to use Win32 threads. Creating a thread in Windows is much faster and uses fewer
system resources than creating a process. The conversion of this type of code to use threads should be
uncomplicated. Of course, code to make the application thread-safe will likely be needed. Threading
locks can be implemented using mutexes or critical sections. The details of how to do this were covered
earlier in this chapter.

Another variation you might see in applications that depend on fork() is the use of pipes to transfer data
and synchronize the parent and child processes. Again, converting this code to use Windows named
pipes is easy. See the preceding "Interprocess Communication" section for details on converting UNIX
pipes to Windows pipes.

Daemons and Services

A UNIX daemon is a process that runs in the background and does not require a user interface. A service
application is the equivalent on Windows. Normally, a daemon is started when the system is booted and
runs without supervision until the system is shut down. Similarly, a Windows service can be started at
boot time and run until shut down. However, the service control manager (SCM) controls all services, so

Page 107 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

to convert daemon code to run on Windows, you must add code to interface with the SCM.

Unless the main() function of the daemon is extremely simple, the best strategy is to rename it to
something else, like service_main(). Then create a new main that contains code to install, uninstall, and
run the service depending on command line arguments.

To install the program as a service, the program must call OpenSCManager to get a handle to the SCM.
It must then call CreateService, passing the SCM handle and several arguments, including the service
name, display name, service type, path to the executable, and identity the service uses to run. Once the
service is installed, the administrative tools services applet may be used to examine and modify many
these values.

Uninstalling the service is similar to installing it. Call OpenSCManager to get a handle to the SCM,
and then call OpenService to get a handle to the service. If it is running, the service should be stopped
by calling the ControlService function. Finally, call DeleteService passing the service handle, and close
the handles to clean up.

Running the daemon as a service is also pretty straightforward. The new main function sets up a
SERVICE_TABLE_ENTRY structure that contains a name and a pointer to the service main, which is
the old main function renamed service_main. This structure is passed to StartServiceCtrlDispatcher,
which does not return until the service stops. Note that more than one service entry can be in the service
entry structure, so a single executable can support more than one service. With definitions the same as a
main() function, the arguments to the service main function are supplied by the SCM and can be set by
the services applet or the CreateService call.

The service main function needs new code to call the function SetServiceStatus that keeps the SCM
informed of the service's status during startup. If the SCM does not receive status updates within a
specified time period, it assumes that the service has stopped running and logs an error. The SCM must
also be given the address of a service control function that it uses to inform the service when it should
stop and for other requests. Call RegisterServiceCtrlHandler or RegisterServiceCtrlHandlerEx to set
this address. When the service is fully initialized, it should call SetServiceStatus with the
SERVICE_RUNNING status to complete the startup sequence.

Refer to the MSDN Web site for sample service programs and details of the service functions.

Appendixes

These appendixes contain a number of code examples demonstrating how to convert code to Win32.

Appendix A: Shared Memory

The following is an example of typical UNIX code that uses shared memory.

UNIX example: shared memory

Consumer

/* This program is a consumer. The shared memory segment is
 created with a call to shmget, with the IPC_CREAT bit specified.
*/

Page 108 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#include "shm_com.h"

int main()
{
 void *shared_memory_loc = (void *)0;
 struct shared_struct *shared_stuff;
 int shmid;

 shmid = shmget((key_t)1111, sizeof(struct shared_struct), 0666 |
 IPC_CREAT);
 if (shmid == -1) {
 fprintf(stderr, "shmget function failed\n");
 exit(EXIT_FAILURE);
 }

/* Make the shared memory accessible to the program. */
 shared_memory_loc = shmat(shmid, (void *)0, 0);
 if (shared_memory_loc == (void *)-1) {
 fprintf(stderr, "shmat function failed\n");
 exit(EXIT_FAILURE);
 }
 printf("Memory attached at %X\n", (int)shared_memory_loc);

/* Assign the shared_memory_loc segment to shared_stuff.
 Echo any text in "some_text".
 Continues until end is found in "some_input" (1 in stored by
Provider).
*/
 shared_stuff = (struct shared_struct *)shared_memory_loc;
 shared_stuff->some_input = 0;
 while(1) {
 if (shared_stuff->some_input) {
 printf("You wrote: %s", shared_stuff->some_text);
 sleep(1); /* the Provider is waiting for this process */
 shared_stuff->some_input = 0;
 if (strncmp(shared_stuff->some_text, "done", 4) == 0) {
 break;
 }
 }
 }

/* Detach and Delete shared memory */
 if (shmdt(shared_memory_loc) == -1) {
 fprintf(stderr, "shmdt function failed\n");
 exit(EXIT_FAILURE);
 }
 if (shmctl(shmid, IPC_RMID, 0) == -1) {
 fprintf(stderr, "shmctl(IPC_RMID) function failed\n");
 exit(EXIT_FAILURE);
 }
 exit(EXIT_SUCCESS);
}

Page 109 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Provider

/* This program is a provider of input text for the consumer. */
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#include "shm_com.h"

int main()
{
 void *shared_memory_loc = (void *)0;
 struct shared_struct *shared_stuff;
 char buffer[BUFSIZ];
 int shmid;

 shmid = shmget((key_t)1111, sizeof(struct shared_struct), 0666 |
IPC_CREAT);
 if (shmid == -1) {
 fprintf(stderr, "shmget function failed\n");
 exit(EXIT_FAILURE);
 }

 shared_memory_loc = shmat(shmid, (void *)0, 0);
 if (shared_memory_loc == (void *)-1) {
 fprintf(stderr, "shmat function failed\n");
 exit(EXIT_FAILURE);
 }
 printf("Memory attached at %X\n", (int)shared_memory_loc);

 shared_stuff = (struct shared_struct *)shared_memory_loc;
 while(1) {
 while(shared_stuff->some_input == 1) {
 printf("waiting for Consumer...\n");
 sleep(1);
 }
 printf("Enter some text: ");
 fgets(buffer, BUFSIZ, stdin);
 strncpy(shared_stuff->some_text, buffer, TEXT_SZ);
 shared_stuff->some_input = 1;
 if (strncmp(buffer, "done", 4) == 0) {
 break;
 }
 }

 if (shmdt(shared_memory_loc) == -1) {
 fprintf(stderr, "shmdt function failed\n");
 exit(EXIT_FAILURE);
 }
 exit(EXIT_SUCCESS);
}

Header

/* A common header file to describe the memory being shared. */

Page 110 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

#define TEXT_SZ 256
struct shared_struct {
 int some_input;
 char some_text[TEXT_SZ];
};

Windows example: shared memory

Provider

/* This program is a provider of input text for the consumer. */
#include <windows.h>
#include <stdio.h>
3#include <stdlib.h>
#include <string.h>

#include "shm_com.h"

void main()
{
 void *shared_memory_loc = NULL;
 struct shared_struct *shared_stuff;
 char buffer[BUFSIZ];
 HANDLE hMapObject = NULL; // handle to file mapping

 hMapObject = CreateFileMapping(
 INVALID_HANDLE_VALUE, // use paging file
 NULL, // no security attributes
 PAGE_READWRITE, // read/write access
 0, // size: high 32-bits
 sizeof(struct shared_struct), // size: low 32-bits
 "MMF1"); // name of map object
 if (hMapObject != NULL) {
 // Get a pointer to the file-mapped shared memory.
 shared_memory_loc = MapViewOfFile(
 hMapObject, // object to map view of
 FILE_MAP_WRITE, // read/write access
 0, // high offset: map from
 0, // low offset: beginning
 0); // default: map entire file
 if (shared_memory_loc == NULL) {
 CloseHandle(hMapObject);
 fprintf(stderr, "MapViewOfFile function failed\n");
 exit(EXIT_FAILURE);
 } else
 memset(shared_memory_loc, '\0', sizeof(struct shared_struct));
 } else {
 fprintf(stderr, "CreateMappedFile function failed\n");
 exit(EXIT_FAILURE);
 }

 printf("Memory attached at %X\n", (int)shared_memory_loc);
 shared_stuff = (struct shared_struct *)shared_memory_loc;
 while(1) {
 while(shared_stuff->some_input == 1) {
 Sleep(1000);
 printf("waiting for Consumer...\n");

Page 111 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 }
 printf("Enter some text: ");
 fgets(buffer, BUFSIZ, stdin);

 strncpy(shared_stuff->some_text, buffer, TEXT_SZ);
 shared_stuff->some_input = 1;

 if (strncmp(buffer, "done", 4) == 0) {
 break;
 }
 }

 if (!UnmapViewOfFile(shared_memory_loc)) {
 fprintf(stderr, "UnmapViewOfFile function failed\n");
 exit(EXIT_FAILURE);
 }

 CloseHandle(hMapObject);
 exit(EXIT_SUCCESS);
}

Consumer

/* This program is a consumer. The shared memory segment is
 created with a call to shmget, with the IPC_CREAT bit specified.
*/
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "shm_com.h"

void main()
{
 void *shared_memory_loc = (void *)0;
 struct shared_struct *shared_stuff;
 HANDLE hMapObject = NULL; // handle to file mapping

 hMapObject = CreateFileMapping(
 INVALID_HANDLE_VALUE, // use paging file
 NULL, // no security attributes
 PAGE_READWRITE, // read/write access
 0, // size: high 32-bits
 sizeof(struct shared_struct), // size: low 32-bits
 "MMF1"); // name of map object
/* Make the shared memory accessible to the program. */
 if (hMapObject != NULL) {
 // Get a pointer to the file-mapped shared memory.
 shared_memory_loc = MapViewOfFile(
 hMapObject, // object to map view of
 FILE_MAP_WRITE, // read/write access
 0, // high offset: map from
 0, // low offset: beginning
 0); // default: map entire file
 if (shared_memory_loc == NULL) {
 CloseHandle(hMapObject);
 fprintf(stderr, "MapViewOfFile function failed\n");

Page 112 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 exit(EXIT_FAILURE);
 } else
 memset(shared_memory_loc, '\0', sizeof(struct shared_struct));
 } else {
 fprintf(stderr, "CreateMappedFile function failed\n");
 exit(EXIT_FAILURE);
 }
 printf("Memory attached at %X\n", (int)shared_memory_loc);

/* Assign the shared_memory_loc segment to shared_stuff.
 Echo any text in "some_text".
 Continues until end is found in "some_input" (1 in stored by
Provider).
*/
 shared_stuff = (struct shared_struct *)shared_memory_loc;
 shared_stuff->some_input = 0;
 while(1) {
 if (shared_stuff->some_input) {
 printf("You wrote: %s", shared_stuff->some_text);
 Sleep(1000); /* the Provider is waiting for this process
*/
 shared_stuff->some_input = 0;
 if (strncmp(shared_stuff->some_text, "done", 4) == 0) {
 break;
 }
 }
 }

/* Detach and Delete shared memory */
 if (!UnmapViewOfFile(shared_memory_loc)) {
 fprintf(stderr, "UnmapViewOfFile function failed\n");
 exit(EXIT_FAILURE);
 }
 CloseHandle(hMapObject);
 exit(EXIT_SUCCESS);
}

Header

/* A common header file to describe the memory being shared. */
#define TEXT_SZ 256
struct shared_struct {
 int some_input;
 char some_text[TEXT_SZ];
};

Appendix B: Limiting File I/O

The following code shows how file I/O can be limited in UNIX and Windows.

UNIX example: limiting file I/O

#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/time.h>

Page 113 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

// The load function writes a string to a temporary file 1000 times
// Then performs arithmetic to generate a load on the CPU.
void load()
{
 FILE *f;
 int i;
 double x = 20.999, y = 10;

 f = tmpfile();
 for(i = 0; i < 1000; i++) {
 fprintf(f,"Perform some output\n");
 if(ferror(f)) {
 fprintf(stderr,"Error writing to a temporary file\n");
 exit(1);
 }
 }
 for(i = 0; i < 1000000; i++)
 y = cbrt(x + y);
}

int main()
{
 struct rusage usage;
 struct rlimit limits;
 int priority;

// Call load, then getrusage function to discover how much CPU time
was used.
 load();
 getrusage(RUSAGE_SELF, &usage);
 printf("CPU usage: User = %ld.%06ld, System = %ld.%06ld\n",
 usage.ru_utime.tv_sec, usage.ru_utime.tv_usec,
 usage.ru_stime.tv_sec, usage.ru_stime.tv_usec);

// Call getpriority & getrlimit for current priority and file size
limits
 priority = getpriority(PRIO_PROCESS, getpid());
 printf("Current priority = %d\n", priority);

 getrlimit(RLIMIT_FSIZE, &limits);
 printf("Current File Size limit: soft = %ld, hard = %ld\n",
 limits.rlim_cur, limits.rlim_max);

// Set a file size limit using setrlimit and call load again.
 limits.rlim_cur = 4096;
 limits.rlim_max = 8192;
 printf("Setting a 4K file size limit\n");
 setrlimit(RLIMIT_FSIZE, &limits);

// This call fails because it attempts to create a file too large.
 load();
 exit(0);
}

Windows example: limiting file I/O

Resource.h

Page 114 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

#ifndef __resource_h__
#define __resource_h__

#include <stdio.h>

#define RLIMIT_CPU 0 /* limit on CPU time per process */
#define RLIMIT_FSIZE 1 /* limit on file size */
#define RLIMIT_DATA 2 /* limit on data segment size */
#define RLIMIT_STACK 3 /* limit on process stack size */
#define RLIMIT_CORE 4 /* limit on size of core dump file */
#define RLIMIT_NOFILE 5 /* limit on number of open files */
#define RLIMIT_AS 6 /* limit on process total address space
size */
#define RLIMIT_VMEM RLIMIT_AS

#define RLIM_NLIMITS 7

/*
 * process resource limits definitions
 */

struct rlimit {
// LARGE_INTEGER rlim_cur;
// LARGE_INTEGER rlim_max;
 __int64 rlim_cur;
 __int64 rlim_max;
};

typedef struct rlimit rlimit_t;

/*
 * Prototypes
 */
int getrlimit(int resource, struct rlimit *);
int setrlimit(int resource, const struct rlimit *);

size_t rfwrite(const void *buffer, size_t size, size_t count, FILE
*stream);
int _rwrite(int handle, const void *buffer, unsigned int count);

//
// Following are the prototypes for the real functions...
//
// size_t fwrite(const void *buffer, size_t size, size_t count, FILE
*stream);
// int _write(int handle, const void *buffer, unsigned int count);

#endif

Resource.c

///
//
// Sample implementation of getrlimit() and setrlimit() for Win32.
//
// Includes wrappers around fwrite() and _write() where the wrappers

Page 115 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

// are resource limit aware.
//
//
///

#include <windows.h>
#include "resource.h"
#include <io.h>
#include <errno.h>

static BOOL rInitialized = FALSE; // Indicates if the
 rlimit structure has been initialized

static rlimit_t rlimits[RLIM_NLIMITS]; // Resource limits array
- on element for each limit we

 // keep track of.

///
//
// InitializeRlimits()
//
// Sets the initial values in the rlimits arrar for the process.
//
///
void InitializeRlimits()
{
 int i; // Index variable
 //
 // Initialize the rlimits structure with 0 for the current value,
 // and 2^32 - 1 for the max. This function could be modified
 // to read the initial values from...
 // ...the registry...
 // ...an environment variable...
 // ...a disk file...
 // ...other...
 // which would then be used to populate the rlimits structure.
 //
 for(i=0; i<RLIM_NLIMITS; i++)
 {
 rlimits[i].rlim_cur = 0;
 rlimits[i].rlim_max = 0xffffffff;
 }
 rInitialized = TRUE;
}

///
// getrlimit()
//
// NOTE: Posix spec states function returns 0 on success and -1
// when an error occurs and sets errno to the error code.
// Currently, if an error occurs, the errno value is returned
// rather than -1. errno is not set.
//
///int
 getrlimit(int resource, struct rlimit *rlp)
{
 int iRet = 0; // return value - assume
success

Page 116 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 //
 // If we have not initialized the limits yet, do so now
 //
 if(!rInitialized)
 InitializeRlimits();

 //
 // Check to make sure the resource value is within range
 //
 if((resource < 0) || (resource >= RLIM_NLIMITS))
 {
 iRet = EINVAL;
 }

 //
 // Return both rlim_cur and rlim_max
 //
 *rlp = rlimits[resource];

 return iRet;
}

///
// setrlimit()
//
// NOTE: Posix spec states function returns 0 on success and -1
// when an error occurs and sets errno to the error code.
// Currently, if an error occurs, the errno value is returned
// rather than -1. errno is not set.
//
///int
 setrlimit(int resource, const struct rlimit *rlp)
{
 int iRet = 0; // return value - assume
success

 if(!rInitialized)
 InitializeRlimits();
 //
 // Check to make sure the resource value is within range
 //
 if((resource < 0) || (resource >= RLIM_NLIMITS))
 {
 iRet = EINVAL;
 }
 //
 // Only change the current limit - do not change the max limit.
 // We could pick some NT privilege, which if the user held, we
 // would allow the changing of rlim_max.
 //
 if(rlp->rlim_cur < rlimits[resource].rlim_max)
 rlimits[resource].rlim_cur = rlp->rlim_cur;
 else
 iRet = EINVAL;
 //
 // We should not let the user set the max value. However,
 // since currently there is no defined source for initial
 // values, we will let the user change the max value.
 //

Page 117 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 rlimits[resource].rlim_max = rlp->rlim_max;

 return iRet;
}

///
// Wrap the real fwrite() with this rfwrite() function, which is
// resource limit aware.
//
//
///size_t
 rfwrite(const void *buffer, size_t size, size_t count, FILE
 *stream)
{
 long position;
 size_t written;
 __int64 liByteCount,
 liPosition;
 //
 // Convert the count to a large integer (64 bit integer)
 //
 liByteCount = (__int64)count;

 //
 // Get the current file position
 //
 position = ftell(stream);
 liPosition = (__int64)position;

 //
 // Check to make sure the write will not exceed the RLIMIT_FSIZE
limit.
 //
 if ((liPosition + liByteCount) > rlimits[RLIMIT_FSIZE].rlim_cur
)
 {
 //
 // report an error
 //
 written = 0;

 }
 else
 {
 //
 // Do the actual write the user requested
 //
 written = fwrite(buffer, size, count, stream);
 }
 return written;
}

///
// Wrap the real _write() function with the _rwrite() function
// which is resource aware.
//
//
///int
 _rwrite(int handle, const void *buffer, unsigned int count)
{

Page 118 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 long position;
 DWORD dwWritten;
 _int64 liByteCount,
 liPosition;
 //
 // Convert the count to a large integer
 //
 liByteCount = (__int64)count;

 //
 // Get the Current file position
 //
 position = _tell(handle);
 liPosition = (__int64)position;

 //
 // Check to make sure the write will not exceed the RLIMIT_FSIZE
limit.
 //
 if ((liPosition + liByteCount) > rlimits[RLIMIT_FSIZE].rlim_cur
)
 {
 //
 // report an error
 //
 dwWritten = 0;
 }
 else
 {
 //
 // Do the actual write the user requested
 //
 dwWritten = _write(handle, buffer, count);
 }
 return dwWritten;
}

RLimit.c

///
// Test program to test the rlimit functions
//
//
//
///
#include "resource.h"

int main()
{
 int i;
 rlimit_t limits,
 lim;
 FILE *fh;

 //
 // First set a limit
 //
 limits.rlim_cur = 1000;
 limits.rlim_max = 5000;

Page 119 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 setrlimit(RLIMIT_FSIZE, &limits);

 //
 // Now read and display the limit
 //
 getrlimit(RLIMIT_FSIZE, &lim);
 printf("\nLimits\n cur = %I64d.\n max = %I64d.\n",
 lim.rlim_cur, lim.rlim_max);

 //
 // Now create a file and start writing to it...
 //
 fh = fopen("a.a", "w");
 for(i=0; i<10000; i++)
 if(!rfwrite("a", 1, 1, fh))
 break;

 printf("\nBroke out of write loop with i = %d.\n", i);

 return 0;
}

Appendix C: Creating a Thread in Windows

The following example application is a simple Windows application with a title bar, menu, and list
window. The Test menu contains four items: Semaphore, Mutex, Critical Section, and Event. You
can exercise multiple executions of a given test simultaneously by selecting the test type repeatedly.
Keep in mind that the tests are only guaranteed to guard against overwriting the shared memory area
within a single type of test. Invoking two different test types simultaneously will not yield a
synchronized result. Moreover, running multiple instances of the application and invoking the same test
in both instances will yield correct results for all synchronization mechanisms except the critical section
test.

This is because the example uses the WaitForSingleObject function. Perhaps a better solution would be
to use the WaitForMultipleObjects, but this is only an example of what you might do. As the designer
and implementer, you may want to do otherwise after considering all of the variants of the WaitFor
function.

stdafx.h

// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
// are changed infrequently
//
#pragma once

#define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff from
 Windows headers
// Windows Header Files:
#include <windows.h>
// C RunTime Header Files
#include <stdlib.h>
#include <malloc.h>
#include <memory.h>
#include <tchar.h>
// TODO: reference additional headers your program requires here

Page 120 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

resource.h

//{{NO_DEPENDENCIES}}
// Microsoft Visual C++ generated include file.
// Used by Named Shared Memory.rc
//
#define IDC_MYICON 2
#define IDD_NAMEDSHAREDMEMORY_DIALOG 102
#define IDS_APP_TITLE 103
#define IDD_ABOUTBOX 103
#define IDM_ABOUT 104
#define IDM_EXIT 106
#define IDI_NAMEDSHAREDMEMORY 107
#define IDC_NAMEDSHAREDMEMORY 109
#define IDM_SEM 110
#define IDM_MUT 111
#define IDM_CRS 112
#define IDM_EVT 113
#define IDR_MAINFRAME 128
#define ID_TEST_IDM 129
#define ID_TEST_IDM130 130
#define IDC_STATIC -1

// Next default values for new objects
//
#ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_NO_MFC 1
#define _APS_NEXT_RESOURCE_VALUE 131
#define _APS_NEXT_COMMAND_VALUE 32771
#define _APS_NEXT_CONTROL_VALUE 1000
#define _APS_NEXT_SYMED_VALUE 110
#endif
#endif

Named shared memory.rc script

// Microsoft Visual C++ generated resource script.
//
#include "resource.h"

#define APSTUDIO_READONLY_SYMBOLS
///
//
// Generated from the TEXTINCLUDE 2 resource.
//
#define APSTUDIO_HIDDEN_SYMBOLS
#include "windows.h"
#undef APSTUDIO_HIDDEN_SYMBOLS

///
#undef APSTUDIO_READONLY_SYMBOLS

///
// English (U.S.) resources

#if !defined(AFX_RESOURCE_DLL) || defined(AFX_TARG_ENU)
#ifdef _WIN32
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US

Page 121 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

#pragma code_page(1252)
#endif //_WIN32

///
//
// Icon
//

// Icon with lowest ID value placed first to ensure application icon
// remains consistent on all systems.
IDI_NAMEDSHAREDMEMORY ICON
 "NamedSharedMemory.ico"

///
//
// Menu
//

IDC_NAMEDSHAREDMEMORY MENU
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "E&xit", IDM_EXIT
 END
 MENUITEM SEPARATOR
 POPUP "&Test"
 BEGIN
 MENUITEM "&Semephore", IDM_SEM
 MENUITEM "&Mutex", IDM_MUT
 MENUITEM "&CriticalSection", IDM_CRS
 MENUITEM "&Event", IDM_EVT
 END
 MENUITEM SEPARATOR
 POPUP "&Help"
 BEGIN
 MENUITEM "&About ...", IDM_ABOUT
 END
END

///
//
// Accelerator
//

IDC_NAMEDSHAREDMEMORY ACCELERATORS
BEGIN
 "?", IDM_ABOUT, ASCII, ALT
 "/", IDM_ABOUT, ASCII, ALT
END

///
//
// Dialog
//

IDD_ABOUTBOX DIALOG 22, 17, 230, 75
STYLE DS_SETFONT | DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "About"
FONT 8, "System"
BEGIN

Page 122 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 ICON IDI_NAMEDSHAREDMEMORY,IDC_MYICON,14,9,16,16
 LTEXT "Named Shared Memory Version
 1.0",IDC_STATIC,49,10,119,8,
 SS_NOPREFIX
 LTEXT "Copyright (C) 2002",IDC_STATIC,49,20,119,8
 DEFPUSHBUTTON "OK",IDOK,195,6,30,11,WS_GROUP
END

#ifdef APSTUDIO_INVOKED
///
//
// TEXTINCLUDE
//

1 TEXTINCLUDE
BEGIN
 "resource.h\0"
END

2 TEXTINCLUDE
BEGIN
 "#define APSTUDIO_HIDDEN_SYMBOLS\r\n"
 "#include ""windows.h""\r\n"
 "#undef APSTUDIO_HIDDEN_SYMBOLS\r\n"
 "\0"
END

3 TEXTINCLUDE
BEGIN
 "\r\n"
 "\0"
END

#endif // APSTUDIO_INVOKED

///
//
// String Table
//

STRINGTABLE
BEGIN
 IDS_APP_TITLE "Named Shared Memory"
 IDC_NAMEDSHAREDMEMORY "NAMEDSHAREDMEMORY"
END

#endif // English (U.S.) resources
///

#ifndef APSTUDIO_INVOKED
///
//
// Generated from the TEXTINCLUDE 3 resource.
//

///
#endif // not APSTUDIO_INVOKED

Named shared Memory.ico

Page 123 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Figure 4.

Named shared Memory.cpp

#include "stdafx.h"
#include "resource.h"
#define MAX_LOADSTRING 100
#define SHMEMSIZE 4096
#define ELEMENTS(x) (sizeof(x) / sizeof(x[0]))

static LPVOID lpvMem = NULL; // pointer to shared memory

// Global Variables:
HINSTANCE hInst; // current instance
TCHAR szTitle[MAX_LOADSTRING]; // The title bar text
TCHAR szWindowClass[MAX_LOADSTRING]; // The main window class
name
LPCTSTR lpszSemaphore = "SEMAPHORE-EXAMPLE";
LPCTSTR lpszMutex = "MUTEX-EXAMPLE";
LPCTSTR lpszEvent = "EVENT-EXAMPLE";

// Forward declarations of functions included in this code module:
ATOM MyRegisterClass(HINSTANCE hInstance);
BOOL InitInstance(HINSTANCE, int);
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);
LRESULT CALLBACK About(HWND, UINT, WPARAM, LPARAM);

int APIENTRY _tWinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow)
{
 // TODO: Place code here.
 MSG msg;
 HACCEL hAccelTable;

 // Initialize global strings
 LoadString(hInstance, IDS_APP_TITLE, szTitle, MAX_LOADSTRING);
 LoadString(hInstance, IDC_NAMEDSHAREDMEMORY, szWindowClass,
 MAX_LOADSTRING);
 MyRegisterClass(hInstance);

 // Perform application initialization:
 if (!InitInstance (hInstance, nCmdShow))
 {
 return FALSE;
 }

 hAccelTable = LoadAccelerators(hInstance,
 (LPCTSTR)IDC_NAMEDSHAREDMEMORY);

 // Main message loop:
 while (GetMessage(&msg, NULL, 0, 0))
 {
 if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg))
 {

Page 124 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }
 return (int) msg.wParam;
}

//
// FUNCTION: MyRegisterClass()
//
// PURPOSE: Registers the window class.
//
// COMMENTS:
//
// This function and its usage are only necessary if you want this
code
// to be compatible with Win32 systems prior to the
 'RegisterClassEx'
// function that was added to Microsoft Windows 95. It is
 important to call this function
// so that the application will get 'well formed' small icons
 associated
// with it.
//
ATOM MyRegisterClass(HINSTANCE hInstance)
{
 WNDCLASSEX wcex;

 wcex.cbSize = sizeof(WNDCLASSEX);

 wcex.style = CS_HREDRAW | CS_VREDRAW;
 wcex.lpfnWndProc = (WNDPROC)WndProc;
 wcex.cbClsExtra = 0;
 wcex.cbWndExtra = 0;
 wcex.hInstance = hInstance;
 wcex.hIcon = LoadIcon(hInstance,
 (LPCTSTR)IDI_NAMEDSHAREDMEMORY);
 wcex.hCursor = LoadCursor(NULL, IDC_ARROW);
 wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
 wcex.lpszMenuName = (LPCTSTR)IDC_NAMEDSHAREDMEMORY;
 wcex.lpszClassName = szWindowClass;
 wcex.hIconSm = LoadIcon(wcex.hInstance,
 (LPCTSTR)IDI_NAMEDSHAREDMEMORY);

 return RegisterClassEx(&wcex);
}
//
// FUNCTION: InitInstance(HANDLE, int)
//
// PURPOSE: Saves instance handle and creates main window
//
// COMMENTS:
//
// In this function, we save the instance handle in a global
 variable and
// create and display the main program window.
//
BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)
{
 HWND hWnd;

Page 125 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 hInst = hInstance; // Store instance handle in our global variable

 hWnd = CreateWindow(szWindowClass, szTitle, WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL, NULL, hInstance,
NULL);

 if (!hWnd)
 {
 return FALSE;
 }

 ShowWindow(hWnd, nCmdShow);
 UpdateWindow(hWnd);

 return TRUE;
}

//
// FUNCTION: SemaphoreChildThreadProc(LPVOID lpData)
//
// PURPOSE: Child thread procedure that waits for a semaphore.
//
// Holds the semaphore for five seconds, and then releases the
semaphore.
// Threads that cannot obtain semaphores will wait.
//

DWORD WINAPI SemaphoreChildThreadProc(LPVOID lpData)
{
 TCHAR szBuffer[256];
 LONG dwSemCount = 0;
 HWND hWnd = (HWND)lpData;
 HANDLE hSemaphore = OpenSemaphore(SYNCHRONIZE |
 SEMAPHORE_MODIFY_STATE, FALSE, lpszSemaphore);

 wsprintf(szBuffer,"Thread %x waiting for semaphore %x",
 GetCurrentThreadId(), hSemaphore);

 SendMessage(hWnd, LB_INSERTSTRING, (WPARAM)-1, (LPARAM)szBuffer
);

 // Wait for signaled semaphore.
 WaitForSingleObject(hSemaphore, INFINITE);
 wsprintf(szBuffer,"Thread %x got semaphore", GetCurrentThreadId()
);
 SendMessage(hWnd, LB_INSERTSTRING, (WPARAM)-1, (LPARAM)szBuffer
);

 // Plug string into shared memory segment
 wsprintf((LPTSTR) lpvMem,"Thread %x Shared memory content",
 GetCurrentThreadId());

 // Shut out other threads.
 Sleep(5000);

 // Display contents of shared memory region.
 wsprintf(szBuffer,"Thread %x Shared memory content is %s",
GetCurrentThreadId(), (LPTSTR) lpvMem);
 SendMessage(hWnd, LB_INSERTSTRING, (WPARAM)-1, (LPARAM) szBuffer

Page 126 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

);

 // Release semaphore.
 ReleaseSemaphore(hSemaphore, 1, &dwSemCount);

 wsprintf(szBuffer,"Thread %x is done with semaphore. Its count
 was %ld.",
 GetCurrentThreadId(), dwSemCount);

 SendMessage(hWnd, LB_INSERTSTRING, (WPARAM)-1, (LPARAM)szBuffer
);

 CloseHandle(hSemaphore);

 return(0);
}

HANDLE hMutex = NULL;

//
// FUNCTION: MutexChildThreadProc(LPVOID lpData)
//
// PURPOSE: Child thread procedure that waits for a mutex.
//
// Thread procedure waits until mutex becomes signaled,
// holds the object for five seconds, and then releases it.
//
DWORD WINAPI MutexChildThreadProc(LPVOID lpData)
{
 TCHAR szBuffer[128];
 HWND hWnd = (HWND)lpData;
 HANDLE hTmpMutex = OpenMutex(MUTEX_ALL_ACCESS, FALSE, lpszMutex
);

 wsprintf(szBuffer,"Thread %x waiting for Mutex %x",
 GetCurrentThreadId(), hMutex);
 SendMessage(hWnd, LB_INSERTSTRING, (WPARAM)-1, (LPARAM)szBuffer
);

 // Wait for signaled mutex.
 WaitForSingleObject(hMutex, INFINITE);
 wsprintf(szBuffer,"Thread %x got mutex!", GetCurrentThreadId());
 SendMessage(hWnd, LB_INSERTSTRING, (WPARAM)-1, (LPARAM)szBuffer
);

 __try {
 // Plug string into shared memory segment
 wsprintf((LPTSTR) lpvMem,"Thread %x Shared memory content",
 GetCurrentThreadId());

 // Shut out other threads.
 Sleep(5000);

 // Display shared memory region
 wsprintf(szBuffer,"Thread %x Shared memory content is %s",
 GetCurrentThreadId(), (LPTSTR) lpvMem);
 SendMessage(hWnd, LB_INSERTSTRING, (WPARAM)-1, (LPARAM) szBuffer
);
 }

Page 127 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 __finally {
 // Release mutex.
 wsprintf(szBuffer,"Thread %x is done with mutex",
 GetCurrentThreadId());
 SendMessage(hWnd, LB_INSERTSTRING, (WPARAM)-1, (LPARAM) szBuffer
);
 ReleaseMutex(hMutex);
 }

 return(0);
}

//
// FUNCTION: CRSChildThreadProc(LPVOID lpData)
//
// PURPOSE: Child thread procedure wrapped in Critical Section.
//
// Thread procedure executes the shared memory piece in a critical
section,
// and holds the object for five seconds before leaving the critical
section.
//
CRITICAL_SECTION cs;

DWORD WINAPI CRSChildThreadProc(LPVOID lpdwData)
{
 TCHAR szBuffer[256];
 HWND hWnd = (HWND)lpdwData;

 wsprintf(szBuffer, "Thread %x waiting for critical section",
 GetCurrentThreadId());
 SendMessage(hWnd, LB_INSERTSTRING, (WPARAM)-1, (LPARAM)szBuffer
);

 // Beginning of protected section.
 __try {
 EnterCriticalSection(&cs);
 wsprintf(szBuffer,"Thread %x in critical section",
 GetCurrentThreadId());
 SendMessage(hWnd, LB_INSERTSTRING, (WPARAM)-1, (LPARAM)szBuffer);

 // Critical code goes here.
 // Plug string into shared memory segment
 wsprintf((LPTSTR) lpvMem,"Thread %x Shared memory content",
 GetCurrentThreadId());

 // Shut out other threads.
 Sleep(5000);

 // Display shared memory region
 wsprintf(szBuffer,"Thread %x Shared memory content is %s",
 GetCurrentThreadId(), (LPTSTR) lpvMem);
 SendMessage(hWnd, LB_INSERTSTRING, (WPARAM)-1, (LPARAM) szBuffer
);
 }

 __finally {
 // End of protected section
 LeaveCriticalSection(&cs);

Page 128 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 wsprintf(szBuffer,"Thread %x has exited critical section",
 GetCurrentThreadId());
 SendMessage(hWnd, LB_INSERTSTRING, (WPARAM)-1, (LPARAM)szBuffer);
 }
 return(0);
}

//
// FUNCTION: EventChildThreadProc(LPVOID lpData)
//
// PURPOSE: Child thread procedure which uses Events.
//
// Thread procedure executes the shared memory piece in an event
section,
// and holds the object for five seconds before leaving the event
section.
//

DWORD WINAPI EventChildThreadProc(LPVOID lpdwData)
{
 TCHAR szBuffer[256];
 HWND hWnd = (HWND)lpdwData;
 HANDLE hEvent = OpenEvent(SYNCHRONIZE, FALSE, lpszEvent);

 wsprintf(szBuffer, "Thread %x waiting for event %x",
 GetCurrentThreadId(), hEvent);
 SendMessage(hWnd, LB_INSERTSTRING, (WPARAM)-1, (LPARAM)szBuffer
);

 // Wait for event.
 WaitForSingleObject(hEvent, INFINITE);
 wsprintf(szBuffer,"Thread %x has received event",
 GetCurrentThreadId());
 SendMessage(hWnd, LB_INSERTSTRING, (WPARAM)-1, (LPARAM)szBuffer
);

 __try {
 // Plug string into shared memory segment
 wsprintf((LPTSTR) lpvMem,"Thread %x Shared memory content",
 GetCurrentThreadId());

 // Shut out other threads.
 Sleep(5000);

 // Display shared memory region
 wsprintf(szBuffer,"Thread %x Shared memory content is %s",
 GetCurrentThreadId(), (LPTSTR) lpvMem);
 SendMessage(hWnd, LB_INSERTSTRING, (WPARAM)-1, (LPARAM) szBuffer
);
 }

 __finally {
 // Release event.
 wsprintf(szBuffer,"Thread %x is done with event",
 GetCurrentThreadId());
 SendMessage(hWnd, LB_INSERTSTRING, (WPARAM)-1, (LPARAM) szBuffer
);
 SetEvent(hEvent);
 CloseHandle(hEvent);
 }

Page 129 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 return(0);
}

//
// FUNCTION: WndProc(HWND, unsigned, WORD, LONG)
//
// PURPOSE: Processes messages for the main window.
//
// WM_COMMAND - process the application menu
// WM_PAINT - Paint the main window
// WM_DESTROY - post a quit message and return
//
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam,
 LPARAM lParam)
{
 int wmId, wmEvent;
 PAINTSTRUCT ps;
 HDC hdc;
 static HWND hList = NULL;
 static HANDLE hSemaphore = NULL;
 static HANDLE hEvent = NULL;

 HANDLE hMapObject = NULL; // handle to file mapping

 switch (message)
 {
 case WM_CREATE:
 // Create list box.
 hList = CreateWindowEx(WS_EX_CLIENTEDGE, "LISTBOX", "",
 LBS_STANDARD | LBS_NOINTEGRALHEIGHT |
 WS_CHILD | WS_VISIBLE,
 0, 0, 10, 10,
 hWnd, (HMENU)101,
 hInst, NULL);
 hMapObject = CreateFileMapping(
 INVALID_HANDLE_VALUE, // use paging file
 NULL, // no security attributes
 PAGE_READWRITE, // read/write access
 0, // size: high 32-bits
 SHMEMSIZE, // size: low 32-bits
 "dllmemfilemap"); // name of map object
 if (hMapObject != NULL) {
 // Get a pointer to the file-mapped shared memory.
 lpvMem = MapViewOfFile(
 hMapObject, // object to map view of
 FILE_MAP_WRITE, // read/write access
 0, // high offset: map from
 0, // low offset: beginning
 0); // default: map entire file
 if (lpvMem == NULL) {
 CloseHandle(hMapObject);
 } else
 memset(lpvMem, '\0', SHMEMSIZE);
 }

 // Initialize Semaphore object.
 hSemaphore = CreateSemaphore(NULL, 1, 1, lpszSemaphore);

 // Initialize Mutex object.

Page 130 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 hMutex = CreateMutex(NULL, FALSE, lpszMutex);

 // Initialize the critical section object.
 InitializeCriticalSection(&cs);

 // Initialize the event object.
 hEvent = CreateEvent(NULL, FALSE, TRUE, lpszEvent);

 break;
 case WM_SIZE :
 if (wParam != SIZE_MINIMIZED)
 MoveWindow(hList, 0, 0, LOWORD(lParam), HIWORD(lParam
), TRUE);
 break;
 case WM_COMMAND:
 wmId = LOWORD(wParam);
 wmEvent = HIWORD(wParam);
 // Parse the menu selections:
 switch (wmId)
 {
 case IDM_SEM:
 {
 DWORD dwChildId;

 CreateThread(NULL, 0, SemaphoreChildThreadProc, hList,
 0, &dwChildId);
 }
 break;
 case IDM_MUT:
 {
 DWORD dwChildId;

 CreateThread(NULL, 0, MutexChildThreadProc, hList, 0,
 &dwChildId);
 }
 break;
 case IDM_CRS:
 {
 DWORD dwChildId;

 CreateThread(NULL, 0, CRSChildThreadProc, hList, 0,
 &dwChildId);
 }
 break;
 case IDM_EVT:
 {
 DWORD dwChildId;

 CreateThread(NULL, 0, EventChildThreadProc, hList, 0,
 &dwChildId);
 }
 break;
 case IDM_ABOUT:
 DialogBox(hInst, (LPCTSTR)IDD_ABOUTBOX, hWnd, (DLGPROC)About);
 break;
 case IDM_EXIT:
 DestroyWindow(hWnd);
 break;
 default:
 return DefWindowProc(hWnd, message, wParam, lParam);

Page 131 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 }
 break;
 case WM_PAINT:
 hdc = BeginPaint(hWnd, &ps);
 // TODO: Add any drawing code here...
 EndPaint(hWnd, &ps);
 break;
 case WM_DESTROY:
 // Close semaphore object
 if (hSemaphore)
 CloseHandle(hSemaphore);

 // Close mutex object
 if (hMutex)
 CloseHandle(hMutex);

 // Release resources used by the critical section object.
 DeleteCriticalSection(&cs);

 // Close event object
 if (hEvent)
 CloseHandle(hEvent);

 // Unmap shared memory from the process's address space
 UnmapViewOfFile(lpvMem);

 // Close the process's handle to the file-mapping object.
 CloseHandle(hMapObject);

 PostQuitMessage(0);
 break;
 default:
 return DefWindowProc(hWnd, message, wParam, lParam);
 }
 return 0;
}

// Message handler for about box.
LRESULT CALLBACK About(HWND hDlg, UINT message, WPARAM wParam, LPARAM
lParam)
{
 switch (message)
 {
 case WM_INITDIALOG:
 return TRUE;

 case WM_COMMAND:
 if (LOWORD(wParam) == IDOK || LOWORD(wParam) == IDCANCEL)
 {
 EndDialog(hDlg, LOWORD(wParam));
 return TRUE;
 }
 break;
 }
 return FALSE;
}

Appendix D: Process Pipes

Page 132 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The following is another example of how process pipes are used in UNIX code. The migrated code for
W2in32 is shown immediately following the UNIX code.

UNIX example: process pipes

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 FILE *read_fp;
 char buffer[BUFSIZ + 1];
 int chars_read;

 memset(buffer, '\0', sizeof(buffer));
 read_fp = popen("ps -l", "r");
 if (read_fp != NULL) {
 chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
 while (chars_read > 0) {
 buffer[chars_read - 1] = '\0';
 printf("Reading:-\n %s\n", buffer);
 chars_read = fread(buffer, sizeof(char), BUFSIZ,
 read_fp);
 }
 pclose(read_fp);
 exit(EXIT_SUCCESS);
 }
 exit(EXIT_FAILURE);
}

Win32 example: process pipes

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{
 FILE *read_fp;
 char buffer[BUFSIZ + 1];
 size_t chars_read;

 memset(buffer, '\0', sizeof(buffer));
 read_fp = _popen("ps -l", "r");
 if (read_fp != NULL) {
 chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
 while (chars_read > 0) {
 buffer[chars_read - 1] = '\0';
 printf("Reading:-\n %s\n", buffer);
 chars_read = fread(buffer, sizeof(char), BUFSIZ,
read_fp);
 }
 _pclose(read_fp);
 exit(EXIT_SUCCESS);

Page 133 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 }
 exit(EXIT_FAILURE);
}

Appendix E: Pipes across a Process

In this example, two separate processes are created. The first process represents the provider and is
responsible for creating the pipe and spawning the consumer. The consumer accepts the single command
line argument that represents the file number for the read end of the pipe. After the consumer is started,
the provider writes a message on the write end of the pipe, and then waits for the consumer process to
terminate.

Since this example is spawning a separate process, the Win32 version does not use fork or exec to
spawn the consumer. The spawnlp function is used in place of fork or exec in Win32. In addition to the
difference in the way the consumer process is spawned and waited on, you should notice a difference in
the set of required header files and a preceding underscore for the pipe function.

As you can see, the differences between these two implementations are trivial.

UNIX example: pipes across a process

Provider

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 int data_processed;
 int file_pipes[2];
 const char some_data[] = "123";
 char buffer[BUFSIZ + 1];
 pid_t pid;
 int tstat;

 memset(buffer, '\0', sizeof(buffer));

 if (pipe(file_pipes) == 0) {
 pid = fork();
 if (pid == (pid_t)-1) {
 fprintf(stderr, "Fork failure");
 exit(EXIT_FAILURE);
 }

 if (pid == 0) {
 sprintf(buffer, "%d", file_pipes[0]);
 (void)execl("Consumer", "Consumer", buffer, (char *)0);
 exit(EXIT_FAILURE);
 }
 else {
 data_processed = write(file_pipes[1], some_data,
 strlen(some_data));
 printf("%d - wrote %d bytes\n", getpid(),

Page 134 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

data_processed);
 waitpid (pid, &tstat, 0);

 if (tstat & 0x0)
 printf("Consumer failed\n");
 }
 }
 exit(EXIT_SUCCESS);
}

Consumer

// The 'consumer' program, pipe4.c, that reads the data is much
simpler.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
 int data_processed;
 char buffer[BUFSIZ + 1];
 int file_descriptor;

 memset(buffer, '\0', sizeof(buffer));
 sscanf(argv[1], "%d", &file_descriptor);
 data_processed = read(file_descriptor, buffer, BUFSIZ);

 printf("%d - read %d bytes: %s\n", getpid(), data_processed,
buffer);
 exit(EXIT_SUCCESS);
}

Win32 example: pipes across a process

Provider

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#include <process.h>
#include <string.h>

int main()
{
 size_t data_processed;
 int file_pipes[2];
 const char some_data[] = "123";
 char buffer[BUFSIZ + 1];
 size_t pid;
 int tstat;

 memset(buffer, '\0', sizeof(buffer));

Page 135 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 if (_pipe(file_pipes, 32, O_BINARY) == 0) {
 sprintf(buffer, "%d", file_pipes[0]);

if ((pid = _spawnlp(P_NOWAIT, "..\\Consumer.exe", "Consumer",
 buffer, NULL)) < 0) {
 exit(EXIT_FAILURE);
 } else {
 data_processed = write(file_pipes[1], some_data,
 (UINT)strlen(some_data));
 printf("%d - wrote %d bytes\n", getpid(),
 data_processed);

 // Wait until spawned program is done processing.
 _cwait(&tstat, pid, WAIT_CHILD);
 if(tstat & 0x0)
 printf("Consumer failed\n");
 }
 }
 exit(EXIT_SUCCESS);
}

Consumer

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#include <process.h>
#include <string.h>

int main(int argc, char *argv[])
{
 size_t data_processed;
 char buffer[BUFSIZ + 1];
 int file_descriptor;

 memset(buffer, '\0', sizeof(buffer));
 sscanf(argv[1], "%d", &file_descriptor);
 data_processed = read(file_descriptor, buffer, BUFSIZ);

 printf("%d - read %d bytes: %s\n", getpid(), data_processed,
buffer);
 exit(EXIT_SUCCESS);
}

Appendix F: Pipes Used as Standard Input/Output

This example reuses the provider and consumer samples seen in the previous section. The examples in
this section differ in two important ways.

First, the provider has been modified so that the read end of the pipe is duplicated and established as the
STDIN device for the consumer, and the consumer is modified to simply use STDIN as the input device
rather than the file handle passed as an argument to main().

Second, the Win32 example in the previous section used _spawnlp to spawn the Consumer process. For
the purposes of demonstrating the CreateProcess as a viable alternative, it is used in the Windows

Page 136 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

example. As part of this alternative approach, the Win32 API functions are used for creating the pipe
and duplicating the handles instead of the standard C runtime library equivalents.

UNIX example: pipes used as standard input/output

Provider

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 int data_processed;
 int file_pipes[2];
 const char some_data[] = "123";
 char buffer[BUFSIZ + 1];
 pid_t pid;
 int tstat;

 memset(buffer, '\0', sizeof(buffer));

 if (pipe(file_pipes) == 0) {
 pid = fork();
 if (pid == (pid_t)-1) {
 fprintf(stderr, "Fork failure");
 exit(EXIT_FAILURE);
 }

 if (pid == 0) {
 close(0);
 dup2(file_pipes[0], 0);
 close(file_pipes[0]);
 close(file_pipes[1]);

 (void)execl("Consumer", "Consumer", (char *)0);
 exit(EXIT_FAILURE);
 }
 else {
 close(file_pipes[0]);
 data_processed = write(file_pipes[1], some_data,
 strlen(some_data));
 close(file_pipes[1]);
 printf("%d - wrote %d bytes\n", getpid(),
 data_processed);
 waitpid (pid, &tstat, 0);

 if (tstat & 0x0)
 printf("Consumer failed\n");
 }
 }
 exit(EXIT_SUCCESS);
}

Consumer

Page 137 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

// The 'consumer' program, pipe4.c, that reads the data is much
simpler.

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 int data_processed;
 char buffer[BUFSIZ + 1];

 memset(buffer, '\0', sizeof(buffer));
 data_processed = fread(buffer, 1, 3, stdin);

 printf("%d - read %d bytes: %s\n", getpid(), data_processed,
buffer);
 exit(EXIT_SUCCESS);
}

Win32 example: pipes used as standard input/output

Provider

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#include <process.h>
#include <string.h>

int main()
{
 DWORD data_processed;
 HANDLE file_pipes[2];
 const char some_data[] = "123\n";
 DWORD tstat;
 SECURITY_ATTRIBUTES sa;
 STARTUPINFO si;
 PROCESS_INFORMATION pi;

 sa.nLength = sizeof(SECURITY_ATTRIBUTES); // Size of struct
 sa.lpSecurityDescriptor = NULL; // Default
descriptor
 sa.bInheritHandle = TRUE; // Inheritable
 // Create the pipe
 if (CreatePipe(&file_pipes[0], &file_pipes[1], &sa, 0)) {

 // Create duplicate of write end so that original
 if (!DuplicateHandle(
 GetCurrentProcess(),
 file_pipes[0], // Original handle
 GetCurrentProcess(),
 NULL, // don't create new handle
 0,
 FALSE, // Not inheritable
 DUPLICATE_SAME_ACCESS)) {

Page 138 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 CloseHandle(file_pipes[0]);
 CloseHandle(file_pipes[1]);
 exit(EXIT_FAILURE);
 }

 // Now populate startup info for CreateProcess
 GetStartupInfo(&si);
 si.dwFlags = STARTF_USESTDHANDLES;
 si.hStdInput = file_pipes[0];
 si.hStdOutput = GetStdHandle(STD_OUTPUT_HANDLE);
 si.hStdError = GetStdHandle(STD_ERROR_HANDLE);

 // Spawn the Consumer process
 if (!CreateProcess(
 "C:\\users\\user1\\PAG\\ProcessPipe\\Debug\\Consumer.exe",
 NULL, // command line
 NULL, // process security
 NULL, // thread security
 TRUE, // inherit handles-yes
 0, // creation flags
 NULL, // environment block
 NULL, // current directory
 &si, // startup info
 &pi)) // process info (out)
 {
 CloseHandle(file_pipes[1]);
 exit(EXIT_FAILURE);
 } else {
 if (!WriteFile(file_pipes[1],// outbound handle of pipe
 &some_data, // buffer to write
 strlen(some_data), // size of buffer
 &data_processed, // bytes written
 NULL)) // overlapping i/o structure
 {
 exit(EXIT_FAILURE);
 }

 printf("%d - wrote %d bytes\n", getpid(),
 data_processed);
 CloseHandle(file_pipes[1]);
 // Wait until spawned program is done processing.
 WaitForSingleObject(pi.hProcess, INFINITE);

 // Get the exit code for the process
 GetExitCodeProcess(pi.hProcess, &tstat);

 CloseHandle(pi.hThread);
 CloseHandle(pi.hProcess);

 if(tstat & 0x0)
 printf("Consumer failed\n");
 }
 }
 exit(EXIT_SUCCESS);
}

Consumer

Page 139 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#include <process.h>
#include <string.h>

int main()
{
 size_t data_processed;
 char buffer[BUFSIZ + 1];

 memset(buffer, '\0', sizeof(buffer));
 data_processed = fread(buffer, 1, 3, stdin);
 //data_processed = 0;

 //gets(buffer);
 printf("%d - read %d bytes: %s\n", getpid(), data_processed,
buffer);
 exit(EXIT_SUCCESS);
}

Appendix G: Waiting for a Spawned Process

The following shows how UNIX code that waits for a child process can be migrated to Win32.

UNIX solution

#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>

int main()
{
 pid_t pid;
 int tstat;

 printf("Running ps with fork and execlp\n");
 pid = fork();
 switch(pid)
 {
 case -1:
 perror("fork failed");
 exit(1);
 case 0:
 if (execlp("ps", NULL) < 0) {
 perror("execlp failed");
 exit(1);
 }
 break;
 default:
 break;
 }

 waitpid(pid, &tstat, 0);

Page 140 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 printf("Child process %d terminated with code %d.\n", pid,
tstat);
 exit(0);
}

Windows solutions

CreateProcess

#include <windows.h>
#include <process.h>
#include <stdio.h>

int main()
{
 STARTUPINFO si;
 PROCESS_INFORMATION pi;
 DWORD tstat;

 GetStartupInfo(&si);

 printf("Running ps with CreateProcess\n");
 CreateProcess(NULL, "ps", // Name of app to launch
 NULL, // Default process security attributes
 NULL, // Default thread security attributes
 FALSE, // Don't inherit handles from the parent
 0, // Normal priority
 NULL, // Use the same environment as the parent
 NULL, // Launch in the current directory
 &si, // Startup Information
 &pi); // Process information stored upon return

 // Suspend our execution until the child has terminated.
 WaitForSingleObject(pi.hProcess, INFINITE);

 // Obtain the termination code.
 GetExitCodeProcess(pi.hProcess, &tstat);

 printf("Child process %d terminated with code %d.\n",
 pi.dwProcessId, tstat);
 exit(0);
}

Spawn solution

#include <windows.h>
#include <process.h>
#include <stdio.h>

int main()
{
// IF Visual Studio 7
// intptr_t pid;

// IF Visual Studio 6
 int pid;
 int tstat;

Page 141 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 printf("Running ps with spawnlp\n");
 pid = _spawnlp(_P_NOWAIT, "ps", "ps", NULL);

// Suspend our execution until the child has terminated.
// obtain termination code upon completion.
 _cwait(&tstat, pid, WAIT_CHILD);

 printf("Child process %d terminated with code %d.\n", pid,
tstat);
 exit(0);
}

Appendix H: Creating a Named Pipe

The following example illustrates creating and using a named pipe in UNIX.

UNIX example: creating a named pipe

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>

int main()
{
 int res = mkfifo("/tmp/my_fifo", 0777);
 if (res == 0)
 printf("FIFO created\n");
 exit(EXIT_SUCCESS);
}

Win32 example: creating a named pipe

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <string.h>

#define BUFSIZE 1024
#define PIPE_TIMEOUT 5000 // 5 Seconds

int main()
{
 BOOL fConnected;
 DWORD dwThreadId;
 HANDLE hPipe, hThread;
 LPTSTR lpszPipename = "\\\\.\\pipe\\mynamedpipe";

 // The following is an approximation of the mode bits used
 // in the UNIX example. Will suffice until verified. 0777
 hPipe = CreateNamedPipe(
 lpszPipename, // pipe name
 PIPE_ACCESS_DUPLEX, // read/write access
 PIPE_TYPE_MESSAGE | // message type pipe
 PIPE_READMODE_MESSAGE | // message-read mode
 PIPE_WAIT, // blocking mode
 PIPE_UNLIMITED_INSTANCES, // max. instances

Page 142 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 BUFSIZE, // output buffer size
 BUFSIZE, // input buffer size
 PIPE_TIMEOUT, // client time-out
 NULL); // no security attribute

 if (hPipe != INVALID_HANDLE_VALUE)
 printf("FIFO created\n");
 exit(EXIT_SUCCESS);
}

Appendix I: Opening a FIFO

The following example shows how you should migrate UNIX FIFO code to Win32.

UNIX example: opening a FIFO

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FIFO_NAME "/tmp/my_fifo"

int main(int argc, char *argv[])
{
 int fd;
 int i;

if (argc < 2) {
 fprintf(stderr, "Usage call once with \"r\" and then with
 \"w\"\n");
 exit(EXIT_FAILURE);
}

// Check if the FIFO exists and create it if necessary.
 if (access(FIFO_NAME, F_OK) == -1) {
 fd = mkfifo(FIFO_NAME, 0777);
 if (fd != 0) {
 fprintf(stderr, "Could not create fifo %s\n", FIFO_NAME);
 exit(EXIT_FAILURE);
 }
 }
 printf("Process %d opening FIFO\n", getpid());

// Open FIFO and output status result
 if (strncmp(argv[1], "r", 1))
 fd = open(FIFO_NAME, O_RDONLY | O_NONBLOCK);
 else if (strncmp(argv[1], "w", 1))
 fd = open(FIFO_NAME, O_WRONLY | O_NONBLOCK);
 else {
 fprintf(stderr, "Usage call once with \"r\" and then with
 \"w\"\n");
 exit(EXIT_FAILURE);
 }

Page 143 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 printf("Process %d file descriptor: %d\n", getpid(), fd);
 sleep(3);
// Close FIFO
 if (fd != -1) close(fd);
 printf("Process %d finished\n", getpid());
 exit(EXIT_SUCCESS);
}

Win32 example: opening a FIFO

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <io.h>
#include <fcntl.h>
#include <process.h>
#include <string.h>

#define FIFO_NAME "\\\\.\\pipe\\mynamedpipe"
#define BUFSIZE 1024
#define PIPE_TIMEOUT 5000 // 5 Seconds
#define F_OK 0

void main()
{
 int fd;
 HANDLE hPipe;

// Check if the FIFO exists and create it if necessary.
 if (_access(FIFO_NAME, F_OK) == -1) {
 hPipe = CreateNamedPipe(
 FIFO_NAME, // pipe name
 PIPE_ACCESS_DUPLEX, // read/write access
 PIPE_TYPE_MESSAGE | // message type pipe
 PIPE_READMODE_MESSAGE | // message-read mode
 PIPE_WAIT, // blocking mode
 PIPE_UNLIMITED_INSTANCES, // max. instances
 BUFSIZE, // output buffer size
 BUFSIZE, // input buffer size
 PIPE_TIMEOUT, // client time-out
 NULL); // no security attribute

 if (hPipe == INVALID_HANDLE_VALUE) {
 fprintf(stderr, "Could not create fifo %s\n", FIFO_NAME);
 exit(EXIT_FAILURE);
 }
 }

 printf("Process %d opening FIFO\n", getpid());
// Open FIFO and output status result
 fd = open(FIFO_NAME, O_RDONLY);

 printf("Process %d file descriptor: %d\n", getpid(), fd);
 Sleep(PIPE_TIMEOUT);
// Close FIFO
 if (fd != -1)
 (void)close(fd);
 printf("Process %d finished\n", getpid());
 exit(EXIT_SUCCESS);

Page 144 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

}

Appendix J: Interprocess Communication with FIFOs

The following example demonstrates how you would convert UNIX FIFO interprocess communications
into Win32 code.

UNIX example: interprocess communication with FIFOs

Provider

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FIFO_NAME "/tmp/my_fifo"
#define BUFFER_SIZE PIPE_BUF
#define TEN_MEG (1024 * 1024 * 10)

int main()
{
 int pipe_fd;
 int res;
 int open_mode = O_WRONLY;
 int bytes_sent = 0;
 char buffer[BUFFER_SIZE + 1];

 if (access(FIFO_NAME, F_OK) == -1) {
 res = mkfifo(FIFO_NAME, 0777);
 if (res != 0) {
 fprintf(stderr, "Could not create fifo %s\n", FIFO_NAME);
 exit(EXIT_FAILURE);
 }
 }

 printf("Process %d opening FIFO O_WRONLY\n", getpid());
 pipe_fd = open(FIFO_NAME, open_mode);
 printf("Process %d result %d\n", getpid(), pipe_fd);

 if (pipe_fd != -1) {
 while(bytes_sent < TEN_MEG) {
 res = write(pipe_fd, buffer, BUFFER_SIZE);
 if (res == -1) {
 fprintf(stderr, "Write error on pipe\n");
 exit(EXIT_FAILURE);
 }
 bytes_sent += res;
 }
 (void)close(pipe_fd);
 }
 else {
 exit(EXIT_FAILURE);
 }

Page 145 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 printf("Process %d finished\n", getpid());
 exit(EXIT_SUCCESS);
}

Consumer

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FIFO_NAME "/tmp/my_fifo"
#define BUFFER_SIZE PIPE_BUF

int main()
{
 int pipe_fd;
 int res;
 int open_mode = O_RDONLY;
 char buffer[BUFFER_SIZE + 1];
 int bytes_read = 0;

 memset(buffer, '\0', sizeof(buffer));

 printf("Process %d opening FIFO O_RDONLY\n", getpid());
 pipe_fd = open(FIFO_NAME, open_mode);
 printf("Process %d result %d\n", getpid(), pipe_fd);

 if (pipe_fd != -1) {
 do {
 res = read(pipe_fd, buffer, BUFFER_SIZE);
 bytes_read += res;
 } while (res > 0);
 (void)close(pipe_fd);
 }
 else {
 exit(EXIT_FAILURE);
 }

 printf("Process %d finished, %d bytes read\n", getpid(),
 bytes_read);
 exit(EXIT_SUCCESS);
}

Win32 example: interprocess communication with FIFOs

Provider

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <io.h>
#include <fcntl.h>

Page 146 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

#include <process.h>
#include <string.h>

#define FIFO_NAME "\\\\.\\pipe\\mynamedpipe"
#define PIPE_SIZE 1024
#define BUFFER_SIZE PIPE_SIZE
#define TEN_MEG (1024 * 1024 * 10)
#define PIPE_TIMEOUT 5000 // 5 Seconds
#define F_OK 0

void main()
{
 int open_mode = O_WRONLY;
 HANDLE hPipe;
 int bytes_sent = 0;
 DWORD NumberOfBytesWritten;
 char buffer[BUFFER_SIZE + 1];
 BOOL fConnected;

// Check whether the FIFO exists and create it if necessary.
// The FIFO is then opened and output given to that effect while the
program
// catches forty winks. Last of all, the FIFO is closed.

 if (_access(FIFO_NAME, F_OK) == -1) {
 hPipe = CreateNamedPipe(
 FIFO_NAME, // pipe name
 PIPE_ACCESS_DUPLEX, // read/write access
 PIPE_TYPE_BYTE| // I/O as stream of bytes
 PIPE_WAIT, // blocking mode
 PIPE_UNLIMITED_INSTANCES, // max. instances
 PIPE_SIZE, // output buffer size
 PIPE_SIZE, // input buffer size
 PIPE_TIMEOUT, // client time-out
 NULL); // no security attribute

 if (hPipe == INVALID_HANDLE_VALUE) {
 fprintf(stderr, "Could not create fifo %s\n", FIFO_NAME);
 exit(EXIT_FAILURE);
 }
 }

 fConnected = ConnectNamedPipe(hPipe, NULL) ?
 TRUE : (GetLastError() == ERROR_PIPE_CONNECTED);

 printf("Process %d opening FIFO O_WRONLY\n", getpid());
 if (fConnected)
 {
 while(bytes_sent < TEN_MEG) {
 if (!WriteFile(
 hPipe, // handle to file
 buffer, // data buffer
 BUFFER_SIZE, // number of bytes to write
 &NumberOfBytesWritten, // number of bytes written
 NULL) // overlapped buffer
) {
 fprintf(stderr, "Write error on pipe\n");
 exit(EXIT_FAILURE);
 }

Page 147 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 bytes_sent += NumberOfBytesWritten;
 }

 printf("Process %d finished\n", getpid());
 }
 else {
 // The client could not connect, so close the pipe.
 CloseHandle(hPipe);
 }

 exit(EXIT_SUCCESS);
}

Consumer

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <io.h>
#include <fcntl.h>
#include <process.h>
#include <string.h>

#define FIFO_NAME "\\\\.\\pipe\\mynamedpipe"
#define PIPE_SIZE 1024
#define BUFFER_SIZE PIPE_SIZE
#define TEN_MEG (1024 * 1024 * 10)
#define PIPE_TIMEOUT 5000 // 5 Seconds
#define F_OK 0

void main()
{
 HANDLE hPipe1;
 DWORD NumberOfBytesRead = 0;
 char buffer[BUFFER_SIZE + 1];
 int bytes_read = 0;

 memset(buffer, '\0', sizeof(buffer));

 printf("Process %d opening FIFO O_RDONLY\n", getpid());
 hPipe1 = CreateFile(FIFO_NAME, // Open the FIFO
 GENERIC_READ, // open for reading
 0, // share for writing
 NULL, // no security
 OPEN_EXISTING, // existing file only
 FILE_ATTRIBUTE_NORMAL, // normal file
 NULL); // no attr. template

 if (hPipe1 == INVALID_HANDLE_VALUE)
 {
 printf("Could not create file %s\n", FIFO_NAME);
 exit(EXIT_FAILURE);
 }
 printf("Process %d result %X\n", getpid(), hPipe1);

 do {
 ReadFile(
 hPipe1, // handle to file
 buffer, // data buffer

Page 148 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 BUFFER_SIZE, // number of bytes to read
 &NumberOfBytesRead, // number of bytes read
 NULL // overlapped buffer
);

 bytes_read += NumberOfBytesRead;
 } while (NumberOfBytesRead > 0);

 CloseHandle(hPipe1);

 printf("Process %d finished, %d bytes read\n", getpid(),
 bytes_read);
 exit(EXIT_SUCCESS);
}

Appendix K: Winforks Example

The following is the code for the Winforks example discussed in this chapter.

// Both.h
// Environment name definitions shared by both parent and child
#define EXIT_NAME "Exit"
#define LOOP_COUNT "LoopCount"
#define PROCESS_NAME "ProcessName"

// ChildExe.c
// Code for child processes
#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include "Both.h"

#define MY_NAME "ChildProcess"

// FUNCTION: main
// PURPOSE: entrypoint for child executable
// PARAMETERS:
// argc - number of command line arguments
// argv - array of command line arguments
// RETURN VALUE:
// int process exit code: 0 = success
//
int main(int argc, char *argv[])
{
 char *ProcessName; // Process name from env
 char *ExitName; // Exit event name from env
 char *LoopBuf; // String buf for loop count
 int LoopCount; // Total loop count from env
 int Count; // Main loop counter
 DWORD WaitStatus; // Status code from wait call
 DWORD TimeoutMSec = 2 * 1000; // Wait timeout in msec
 HANDLE ExitEventHandle; // Exit event handle

 // Get process name from env
 ProcessName = getenv(PROCESS_NAME);
 if (!ProcessName)
 {
 printf("%s: getenv error for process name: %s\n",
MY_NAME, PROCESS_NAME);

Page 149 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 return 1;
 }

 // Get main loop count from env
 LoopBuf = getenv(LOOP_COUNT);
 if (!LoopBuf)
 {
 printf("%s %s: getenv error for loop count %s\n",
MY_NAME, ProcessName, LOOP_COUNT);
 return 2;
 }
 LoopCount = atoi(LoopBuf);

 // Get Exit event name from env
 ExitName = getenv(EXIT_NAME);
 if (!ExitName)
 {
 printf("%s %s: getenv error for event name %s\n",
MY_NAME, ProcessName, EXIT_NAME);
 return 5;
 }

 // Get handle for Exit event
 ExitEventHandle = OpenEvent(
 EVENT_ALL_ACCESS, // access rights - all
 FALSE, // event not inheritable
 ExitName // event name from env
);
 if (!ExitEventHandle)
 {
 printf("%s %s: error opening %s event %s\n", MY_NAME,
ProcessName, EXIT_NAME, ExitName);
 return 6;
 }

 /////////////////////
 // processing loop
 /////////////////////
 for (Count = 1; Count <= LoopCount; ++Count)
 {
 // Wait for event to occur or timeout
 WaitStatus = WaitForSingleObject(
 ExitEventHandle, // object handle
 TimeoutMSec // timeout value in msec
);

 // If it's timeout, do background processing
 if (WaitStatus == WAIT_TIMEOUT)
 {
 // TODO: put periodic polling processes here
 printf("%s %s: waiting %d\n",
MY_NAME, ProcessName, Count);
 }
 else if (WaitStatus == WAIT_OBJECT_0)
 {
 // Event happened, WaitForSingleObject returns
 // a specific value indicating that the
 // exit event object was signaled.
 printf("%s %s: got %s event: %s\n", MY_NAME,
ProcessName, EXIT_NAME, ExitName);

Page 150 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 Count = LoopCount + 1;
 }
 else
 {
 // unhandled return status, give up
 printf("%s %s: got unknown event: %d\n",
MY_NAME, ProcessName, WaitStatus);
 Count = LoopCount + 1;
 }
 } // end processing loop

 printf("%s %s: exiting\n", MY_NAME, ProcessName);
 return 0;
}

// WinForks.c
// Code for parent process
#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include "Both.h"

// Event and other names
#define EXIT_EVENT "TheExitNowEvent"
#define MY_NAME "ParentProcess"
#define CHILD_PROJECT "ChildExe"

// Handle array indices
#define MAX_CHILDREN 4
#define MAX_HANDLES MAX_CHILDREN

// Child process info structure and functions
typedef struct ChildProcInfo
{
 BOOL IsRunning;
 UINT ProcIndex;
 HANDLE ExitEvent;
 PROCESS_INFORMATION ProcInfo;
} ChildProcInfo;

UINT ChildStart(ChildProcInfo *ProcInfoPtr,
LPCTSTR ChildProject,
UINT ProcIndex);
BOOL ChildStop(ChildProcInfo *ProcInfoPtr);
BOOL ChildCleanup(ChildProcInfo *ProcInfoPtr);

// FUNCTION: main
// PURPOSE: application entry point
// PARAMETERS:
// argc - number or count of command line arguments
// argv - array of command line argument strings
// RETURN VALUE: int success code
//
int main(int argc, char* argv[])
{
 DWORD HandleCount; // Count of child process handles
 DWORD WaitStatus; // Status returned by wait func
 DWORD HandleIndex; // Handle index returned by wait
 DWORD TimeoutMSec = 4 * 1000; // Wait timeout in milliseconds
 HANDLE ObjectHandles[MAX_HANDLES]; // Array of child proc handles

Page 151 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 int Count, ii; // Main loop counter, another
 BOOL IsRunning = TRUE; // Keep running flag
 ChildProcInfo ChildInfo[MAX_CHILDREN]; // Array of child procinfo

 // Initial clear all handles
 memset(ObjectHandles, 0, sizeof(ObjectHandles));

 // Start a number of child processes
 for (ii = 0; ii < MAX_CHILDREN; ++ii)
 {
 if (ChildStart(&ChildInfo[ii], CHILD_PROJECT, ii + 1) != 0)
 {
 // error starting child
 IsRunning = FALSE;
 break;
 }
 }

 /////////////////////
 // processing loop //
 /////////////////////
 for (Count = 1; IsRunning; ++Count)
 {
 // Build array of child process handles
 for (HandleCount = 0, ii = 0; ii < MAX_CHILDREN; ++ii)
 {
 if (ChildInfo[ii].IsRunning)
 ObjectHandles[HandleCount++] =
ChildInfo[ii].ProcInfo.hProcess;
 }

 // Wait for child event to occur or timeout
 WaitStatus = WaitForMultipleObjects(
 HandleCount, // num objs waiting for
 ObjectHandles, // array ofobject handles
 FALSE, // wait for 1 (not all)
 TimeoutMSec // timeout value in msec
);

 // If it's timeout, do background processing
 if (WaitStatus == WAIT_TIMEOUT)
 {
 // TODO: put periodic polling processes here
 printf("%s: loop number %d\n", MY_NAME, Count);
 }
 else
 {
 // Event happened, WaitForMultipleObjects returns
 // the index of the handle signaled + an offset
 HandleIndex = WaitStatus - WAIT_OBJECT_0;
 if (HandleIndex < HandleCount)
 {
 // child exited, stop running when none left
 for (ii = 0, IsRunning = FALSE;
ii < MAX_CHILDREN;
++ii)
 {
 if (ChildInfo[ii].ProcInfo.hProcess ==
ObjectHandles[HandleIndex])
 {

Page 152 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 printf("child %d [%x] exited\n",
ChildInfo[ii].ProcIndex,
ChildInfo[ii].ProcInfo.hProcess);

 // Clean up this one's info
 ChildCleanup(&ChildInfo[ii]);
 }
 else if (ChildInfo[ii].IsRunning)
 IsRunning = TRUE;
 }
 }
 else
 {
 // unhandled return status. stop children, self
 printf("unknown event %d\n", WaitStatus);
 IsRunning = FALSE;
 }
 } // else event happened
 } // while IsRunning

 // Final cleanup
 for (ii = 0; ii < MAX_CHILDREN; ++ii)
 {
 ChildStop(&ChildInfo[ii]);
 }
 return 0;
}

// FUNCTION: ChildStart
// PURPOSE: start a child process
// PARAMETERS:
// ProcInfoPtr - pointer to process information structure
// ChildProject - project name for child executable
// ProcIndex - child process index (count)
// RETURN VALUE:
// 0 - OK
// else - some error happened
//
UINT ChildStart(ChildProcInfo *ProcInfoPtr, LPCTSTR ChildProject,
 UINT ProcIndex)
{
 char Name[40]; // String for building names
 char StrBuf[256]; // String for building env entries
 char EnvStrings[512]; // The environment passed to child
 char *NextEnvChar; // Pointer to next output char in env
 STARTUPINFO StartupInfo; // Startup info for CreateProcess

 // Start anew
 memset(ProcInfoPtr, 0, sizeof(ChildProcInfo));
 ProcInfoPtr->ProcIndex = ProcIndex;

 // Setup environment as we go along
 NextEnvChar = EnvStrings;

 // Add "LoopCount=<some number>" to environment:
 sprintf(StrBuf, "%s=%d", LOOP_COUNT, ProcIndex + 2);
 strcpy(NextEnvChar, StrBuf);
 NextEnvChar += strlen(StrBuf) + 1;

 // Create a process name

Page 153 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 sprintf(Name, "P-%d", ProcIndex);

 // Add "ProcessName=<proc name>" to environment:
 sprintf(StrBuf, "%s=%s", PROCESS_NAME, Name);
 strcpy(NextEnvChar, StrBuf);
 NextEnvChar += strlen(StrBuf) + 1;

 // Create an exit event name
 sprintf(Name, "%s%d", EXIT_EVENT, ProcIndex);

 // Add "Exit=<exit event name>" to environment:
 sprintf(StrBuf, "%s=%s", EXIT_NAME, Name);
 strcpy(NextEnvChar, StrBuf);
 NextEnvChar += strlen(StrBuf) + 1;

 // Create the actual Exit event
 ProcInfoPtr->ExitEvent = CreateEvent(
 NULL, // Def security attr
 TRUE, // Manual reset
 FALSE, // Initial not signal
 Name // Name (defined here)
);
 if (!ProcInfoPtr->ExitEvent)
 {
 printf("error creating event %s", Name);
 ChildCleanup(ProcInfoPtr);
 return 2;
 }

 // Add null terminator to environment block (2 nulls at end)
 *NextEnvChar = 0;

 // Setup startup info
 memset(&StartupInfo, 0, sizeof(StartupInfo));
 StartupInfo.cb = sizeof(StartupInfo);

 // Set application path
 // Release assumes parent and child exes are in same dir
 GetModuleFileName(NULL, StrBuf, sizeof(StrBuf));
 NextEnvChar = strrchr(StrBuf, '\\');
#if _DEBUG
 // Get past Debug dir
 *NextEnvChar = 0;
 NextEnvChar = strrchr(StrBuf, '\\');
 *(++NextEnvChar) = 0;
 strcat(NextEnvChar, ChildProject);
 strcat(NextEnvChar, "\\Debug\\");
#else
 *(++NextEnvChar) = 0;
#endif
 strcat(NextEnvChar, ChildProject);
 strcat(NextEnvChar, ".exe");

 // Create "child" process
 if (!CreateProcess(
 StrBuf, // Application path
 NULL, // No cmd line, uses env
 NULL, // Default process security
 NULL, // Default thread security
 FALSE, // No inherit handles

Page 154 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 NORMAL_PRIORITY_CLASS, // Creation flags
 EnvStrings, // The env we built
 NULL, // Same current dir
 &StartupInfo, // Startup info
 &ProcInfoPtr->ProcInfo)) // Returned proc info
 {
 printf("error %d creating child process", GetLastError());
 ChildCleanup(ProcInfoPtr);
 return 3;
 }

 // Completed OK
 ProcInfoPtr->IsRunning = TRUE;
 return 0;
}

// FUNCTION: ChildStop
// PURPOSE: Stop a child process
// PARAMETERS:
// ProcInfoPtr - pointer to process information structure
// RETURN VALUE:
// TRUE: success
// FALSE: error
//
BOOL ChildStop(ChildProcInfo *ProcInfoPtr)
{
 if (ProcInfoPtr->IsRunning)
 {
 return SetEvent(ProcInfoPtr->ExitEvent);
 }
 return FALSE;
}

// FUNCTION: ChildCleanup
// PURPOSE: Clean up a child process info struct
// PARAMETERS:
// ProcInfoPtr - pointer to process information structure
// RETURN VALUE:
// TRUE: success
// FALSE: error
//
BOOL ChildCleanup(ChildProcInfo *ProcInfoPtr)
{
 BOOL RetStatus = TRUE;

 // Close all the handles, remember any failure
 if (ProcInfoPtr->ExitEvent)
 RetStatus &= CloseHandle(ProcInfoPtr->ExitEvent);
 if (ProcInfoPtr->ProcInfo.hThread)
 RetStatus &= CloseHandle(ProcInfoPtr->ProcInfo.hThread);
 if (ProcInfoPtr->ProcInfo.hProcess)
 RetStatus &= CloseHandle(ProcInfoPtr->ProcInfo.hProcess);

 // Clear struct
 memset(ProcInfoPtr, 0, sizeof(ChildProcInfo));

 return RetStatus;
}

Page 155 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Send feedback to Microsoft

© Microsoft Corporation. All rights reserved.

Page 156 of 156Chapter 9: Win32 Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

