
UNIX Application Migration Guide

Chapter 11: Migrating the User Interface

Larry Twork, Larry Mead, Bill Howison, JD Hicks, Lew Brodnax, Jim McMicking, Raju Sakthivel,
David Holder, Jon Collins, Bill Loeffler
Microsoft Corporation

October 2002

Applies to:
 Microsoft® Windows®

UNIX applications

The patterns & practices team has decided to archive this content to allow us to streamline our latest
content offerings on our main site and keep it focused on the newest, most relevant content. However, we
will continue to make this content available because it is still of interest to some of our users.
We offer this content as-is, without warranty that it is still technically accurate as some of the material is
undoubtedly outdated. Note that the content may contain URLs that were valid when originally
published, but now link to sites or pages that no longer exist.

Summary: Chapter 11: Migrating the User Interface introduces the concepts of both the Windows and
X11 windowing systems and discusses the similarities and differences between them. Migration guidance
is presented by illustrating how window objects may be coded on UNIX and how that code may be
migrated to Windows. (99 printed pages)

Contents

Introduction
Comparing X Windows and Microsoft Windows
User Interface Programming In X Windows and Microsoft Windows
Window Management
Device Management
Displaying Text
Drawing
Timeouts and Timers
Migrating Character-Based User Interfaces
Porting OpenGL Applications
GDI+
Mapping X Windows Terminology to Microsoft Windows
Mapping X Windows Tools to Microsoft Windows

UNIX Code Migration Guide

Page 1 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

User Interface Coding Examples

Introduction

This chapter describes how to migrate from a UNIX-based user interface to a Windows user interface.
Because the overwhelming majority of UNIX graphical interfaces are built on X Windows and Motif,
this chapter focuses on porting code from X Windows to the Microsoft® Windows® operating system. It
describes:

l The architectural and visual differences between the two environments
l The programming principles used by X Windows and Microsoft Windows
l How to migrate each type of graphical construct from one environment to the other

This chapter also includes short sections on migrating from other UNIX user interface types, including
text-based and OpenGL-based interfaces. It concludes with examples of how user interface code can be
migrated in the sections under "UI Coding Examples."

Comparing X Windows and Microsoft Windows

The main user interface type in use on the UNIX platform today builds on the X Windows set of
standards, protocols and libraries. To gain an understanding of how to migrate such a user interface, it is
worth comparing the user interface architecture and the resulting look and feel in the two models. Finally,
it is useful to understand differences in windowing terminology between the two environments.

User Interface Architecture

The architecture of X Windows-based interfaces differs significantly from Microsoft Windows
architecture. First and most fundamental is the orientation of client and server. For X Windows, the client
is the application that requests services and receives information from the user interface. The user-facing
elements of the interface are based on what is termed the X Server.

In the X Windows-based system, the client application sends requests to the server to display graphics
and to send mouse and keyboard events. The X Server is responsible for doing all the work on the client's
behalf. The client might run on a remote system with no graphics hardware or on the same physical
machine as the server. In either case, the client does not interact with the display, mouse, or keyboard.
This is shown in Figure 1, which represents the X Windows client-server architecture.

Page 2 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Figure 1. The X Windows architectural model

By contrast, a standard Microsoft Win32® application is not responsible for dealing with the display,
mouse or hardware. Figure 2 shows the path from an application down through the layers to the hardware
in Win32.

Figure 2. The Microsoft Windows user interface architecture

Look and Feel

X Windows is normally used with the Motif widget library, which is a library of user interface
components—such as scroll bars, buttons, drop-down lists and dialog boxes—that can be used off the
shelf. Because many X Windows applications use Motif's "look and feel," Motif has transcended being

Page 3 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

considered just a third-party library, to the extent that some developers consider X Windows and Motif as
one and the same.

According to the Motif Programming Manual and the Microsoft Official Guidelines for User Interface
Developers and Designers, all applications that a user can run on the desktop should have a consistent
"look and feel" as well as functional design. Anything else is likely to confuse users, possibly to the point
where they will not use the application.

Although there are many differences, Microsoft Windows and X Windows with Motif both have roots in
the IBM Common User Access (CUA) guidelines. The resulting similarity in look and feel is not too
surprising. Every windowing system needs to perform the same tasks:

l Determine which font is used to display text
l Determine background color
l Specify where a checkbox appears
l Show that a user has clicked a particular button

After satisfying the task list, it just becomes a matter of methodology. Notice the similarities in
terminology and appearance of in Figure 3, An example Motif dialog box, and Figure 4, An example
Microsoft Windows dialog box.

Figure 3. An example Motif dialog box

Page 4 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Figure 4. An example Microsoft Windows dialog box

Note To ensure a consistent look and feel with other Windows applications, migration of
X/Motif applications to native Microsoft Win32 should be governed by the official Microsoft
guidelines.

Window Types

Windows types are very similar between the X Windows and Windows environments, as detailed here.

Desktop window

The X Windows system automatically creates the desktop window. This is a system-defined window that
is the base for all windows displayed by all applications. In X Windows, it can be thought of in the same
general terms as the root window.

A Win32-based application can retrieve a handle to this window by using the GetDesktopWindow()
function.

Application window

The Application Window is the interface between the user and the application. Elements such as a menu
bar, window menu, minimize, maximize, close button, title bar, sizing border, client area, and scroll bars
typically appear in the Application Window.

Dialog boxes

A user typically accesses a dialog box as a temporary window used to create some additional input. A

Page 5 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

dialog box contains one or more controls, such as buttons and check boxes, to elicit user input. A
developer can build an entire Win32-based program by using dialog box functionality.

Modeless dialog box

When the system creates a modeless dialog box, it becomes the active window. The modeless dialog box
does not disable its parent window nor send messages to its parent window. However, it stays at the top
of the Z-order even if its parent window becomes the active window.

Applications can create a modeless dialog box by using the CreateDialog() function, with arguments to
specify the identifier of a dialog box template and the pointer to the callback procedure that handles
messages for the window.

Modal dialog box

A modal dialog box becomes the active window when the system creates it. Until a call to EndDialog(),
the dialog box remains the active window. Neither the application nor the user can make the parent
window active. EndDialog() must be called.

An application uses the DialogBox() function with a resource identifier to create a modal dialog box. Use
a modal dialog box when it is desirable to force user input before proceeding.

Message box

A message box is a special dialog box that displays a note, caution or warning to the user. For example, a
message box can inform the user of a problem the application has encountered while performing a task.

Reference Material

Table 1 compares popular subject matter for X/Motif and Microsoft Windows. All of the Microsoft
documents are accessible from the MSDN Web® site.

Table 1. References for X/Motif and Microsoft Windows

To download the Microsoft Platform SDK, go to the Microsoft Web page for downloads. From the list of
available downloads, type "Platform SDK" in the Product Name box, and then follow the instructions to
download it.

User Interface Programming In X Windows and Microsoft
Windows

The basics of getting a Microsoft Windows-based application and an X/Motif application started are very
similar conceptually. Also, the libraries and core functions are similar in both environments. This section

X Windows Reference Microsoft Windows Reference
Motif Style Guide Official Guidelines for User Interface Developers

and Designers
Motif Programming Manual Platform SDK: Windows User Interface
Motif Reference Manual Platform SDK: Windows API

Page 6 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

discusses the programming principles for developing user interfaces in the two environments.

Programming Principles

The basic structure of an X Windows application that uses Motif is quite similar to the structure of a
Microsoft Windows-based application.

To initiate an X Windows-based interface

1. Initialize the toolkit.
2. Create widgets.
3. Manage widgets.
4. Set up callbacks.
5. Display widgets.
6. Enter the main program event handler.

The following code illustrates these steps:

topWidget = XtVaAppInitialize();
frame = XtVaCreateManagedwidget("frame",xmFrameWidgetFrams,
topWidget,,,);
button = XmCreatePushButton(frame, "EXIT", NULL, 0);
XtManageChild(button)
XtAddCallback(button, XmNactivateCallback, myCallback, NULL);
XtRealizeWidget(topWidget);
XtAppMainLoop();

To initiate a Microsoft Windows-based application

1. Initialize an instance and register the Window class.
2. Set up callbacks.
3. Create the window.
4. Display the window.
5. Enter the main program message loop.

The following code illustrates these steps:

windowClassStruct.hInstance = thisApplicationInstance;
windowClassStruct.lpfnWndProc = (WNDPROC)myCallback;
RegisterClass(&windowClassStruct);
myWindow = CreateWindow();
ShowWindow(myWindow);
while(GetMessage(,,,)) {…}

To deal with input devices, X clients and Win32-based applications rely on events and messages from the
outside. X and Win32 use a similar method for this, a message loop where a callback or inline code
executes based on the nature of the event or message.

The following code snippet shows a simple Win32 message loop:

while (GetMessage(&msg, NULL, 0, 0)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);

Page 7 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

}

The GetMessage() API returns an MSG structure (&msg). Right now, only the message member of this
structure (UINT message; in the following listing) is of interest. Windows places the message identifier
in this field. The developer can use this in the message loop to capture device events.

Typedef struct tagMSG {
 HWND hwnd;
 UINT message;
 WPARAM wParam;
 LPARAM lParam;
 DWORD time;
 POINT py;
} MSG, *PMSG;

Libraries and Include Files

Despite differences in their underlying architectures, many of the graphical functions used in X Windows
and Microsoft Windows perform similar tasks. These include the core libraries and the Motif and Win32
common dialog boxes.

Core libraries

A number of functions exist to support the core API used in a graphical user interface. X Windows
includes the libraries X and Xlib and the X Windows Intrinsics toolkit. The Win32 equivalent is
Windows.h, which includes a great number of additional header files.

The Microsoft compiler includes Win32 USER32.LIB and GDI32.LIB import libraries, which can be
roughly compared to X Library and X Toolkit Intrinsics because they provide nearly all of the basic
window management and 2D Graphics APIs.

These Win32 libraries are called import libraries because they provide information to the linker. When a
Win32-based program references the CreateWindow() function, User32.lib tells the linker that this
function is in the User32.dll dynamic-link library. This information goes into the .exe file, which enables
Windows to perform dynamic linking by using the User32.dll and Gdi32.dll dynamic-link libraries when
the program is executed.

Motif and Win32 common dialog boxes

Dialog box functionality is provided by Motif and by the Windows common dialog box library. If the
code migrates from Motif, there is probably an equivalent Win32 common dialog box for each Motif
function.

Win32 provides a set of functions to create commonly used windows. If Commdlg.h is included in a
project, the project has access to the Win32 common dialog box functions. The Comdlg32.dll library
stores templates for these dialog boxes, along with the code to drive them. By using these, a developer
can save time and provide a consistent look and feel in the application being migrated.

For example, the Motif function XmCreateFileSelectionDialog() is very similar to the Win32 function
GetOpenFileName(). The X/Motif code must include the Xm/FileSB.h header file. The Win32-based
applicationmust include Commdlg.h and link to Comdlg32.lib. Calling the GetOpenFileName() API to
displays the Open File dialog box, as shown in Figure 5.

Page 8 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Figure 5. The GetOpenFileName common dialog box

Table 2 lists the available common dialog box functions.

Table 2. Common dialog box functions

In addition to Windows.h, the Windowsx.h library has roots in Windows version 3.1 and provides many
useful macros that can be used in code migration. These macros are not used as often or in the same ways
now, but they can be helpful. For example, the SelectPen() and DeletePen() macros can be more intuitive

Function Description
ChooseColor() Creates a Color dialog box that enables the user to

select a color.
ChooseFont() Creates a Font dialog box that enables the user to

choose attributes for a logical font.
CommDlgExtendedError() Returns a common dialog box error code.
FindText() Creates a system-defined modeless Find dialog box

that lets the user specify a string to search for and
specify options to use when searching for text in a
document.

GetFileTitle() Retrieves the name of the specified file.
GetOpenFileName() Creates an Open dialog box that lets the user specify

the drive, the directory, and the name of a file or set of
files to open.

GetSaveFileName() Creates a Save dialog box that lets the user specify the
drive, the directory, and the name of a file to save.

PageSetupDlg() Creates a Page Setup dialog box that enables the user
to specify the attributes of a printed page.

PrintDlg() Displays a Print dialog box.
PrintDlgEx() Displays a Print property sheet that enables the user to

specify the properties of a particular print job.
ReplaceText() Creates a system-defined modeless dialog box that lets

the user specify a string to search for and a
replacement string, as well as options to control the
find and replace operations.

Page 9 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

than calling SelectObject() and DeleteObject() with all the required type specifications.

#define SelectPen(hdc, hpen)((HPEN)SelectObject((hdc),
(HGDIOBJ)(HPEN)(hpen)))
#define DeletePen(hpen) DeleteObject((HGDIOBJ)(HPEN)(hpen))

Writing X Windows APIs for Win32

It might be easier to migrate by creating X Windows-like APIs in the Win32 environment. Creating these
APIs can make the original X Windows code easier to migrate to native Win32 and perhaps make the
code more portable. The following examples demonstrate this approach.

The following are examples of macro-based APIs:

#define DefaultRootWindow(display) GetDesktopWindow()
#define RootWindow(display,screen) GetDesktopWindow()
#define DefaultScreen(display) ((int)(0))
#define DefaultGC(display,screen) GetDC(display)

The following code demonstrates the use of DisplayWidth and DisplayHeight:

#define DisplayWidth(d,s) ((unsigned int)GetSystemMetrics(
SM_CXSCREEN))
#define DisplayHeight(d,s) ((unsigned int)GetSystemMetrics(
SM_CYSCREEN))
unsigned int maxWIDE;
unsigned int maxHIGH;
maxWIDE = DisplayWidth(x,x);
maxHIGH = DisplayHeight(x,x);

The following code demonstrates the use of XtMessage:

//+
// XtMessage(TCHAR *message)
//
// This function requires the following on Win32:
// 1. A global variable HANDLE stdOut;
// 2. The following initialization code in WinProc()
//
// switch(message) {
// case WM_CREATE :
// --< AllocConsole();
// --< stdOut = GetStdHandle(STD_OUTPUT_HANDLE);
// (. . .)
//
//
// 3. The following cleanup code in WinProc()
//
// switch(message) {
// case WM_CLOSE :
// --> FreeConsole();
// (. . .)
//-

The following code demonstrates the use of XtWarning:

Page 10 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

void XtWarning(TCHAR *message)
{
 DWORD charsWritten;
 WriteConsole(stdOut, message, _tcsclen(message) , &charsWritten,
NULL);
}

Window Management

Window management functions cover the creation, initialization, management, and eventual destruction
of dialog boxes and other window types.

Creating Windows

The code listings in this section show some X Windows and Win32 implementations of window
management. It is not likely that any large-scale X Windows client or Win32-based application would
actually be implemented as these short code snippets are. However, it is easy to see the conceptual
similarities and some differences as well.

An X Windows X11 client might use XtAppInitialize(), XtVaAppInitialize(), XtOpenApplication() or
XtVaOpenApplication to get a top-level widget to create a window, as shown in the following code:

main (int argc, char *argv[])
{
 Widget toplevel; /* Conceptual Application Window */
 XtAppContext app; /* context of the app */

 toplevel = XtVaAppInitialize(&app,
 "myClassName",
 NULL,0,&argc,argv,NULL,NULL);

 OR

 toplevel = XtOpenApplication(&app,
 "myClassName",
 NULL,0,&argc,argv,NULL,
 whateverWidgetClass, NULL,0);

 ...
 ...

In the following code, a Win32-based graphical application creates a main window:

BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)
{
 HWND hWnd; // handle to the Application Window

 hWnd = CreateWindow("myClassName",
 "myWindowsName",
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,
 0,
 CW_USEDEFAULT,
 0,
 NULL,
 NULL,

Page 11 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 hInstance, // context of the app
 NULL);

…
 …

An X Windows client can create a control or widget as follows:

main (int argc, char *argv[])
{
 Widget toplevel; /* Conceptual Application Window */
 Widget button;
 XtAppContext app; /* context of the app */

 toplevel = XtVaAppInitialize(&app, "Example",
NULL,0,&argc,argv,NULL,NULL);
 button = XtVaCreateManagedWidget("command",
 commandWidgetClass, /* class
*/
 toplevel, /* parent
*/
 XtNheight, 50,
 XtNwidth, 100,
 XtNlabel, "Press To Exit",
 NULL);

A Win32-based application can create a control or widget as follows:

BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)
{
 HWND hWnd; // handle to the Application Window
 HWND hButton;

 hWnd = CreateWindow("myClassName",
 "Example",
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,
 0,
 CW_USEDEFAULT,
 0,
 NULL,
 NULL,
 hInstance,
 NULL);

 hButton = CreateWindow("BUTTON", // class
 "Press To Exit",
 WS_CHILD | BS_PUSHBUTTON,
 Xcoordinate,
 Ycoordinate,
 Width,
 Height,
 hWnd, // parent
 (HMENU)idNumberOfThisControl,
 hInstance,
 NULL
);

Creating Controls

Page 12 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Controls—such as X Windows widgets—come in all shapes, sizes, colors and functions. There are two
ways to create controls in a Win32 environment. The first and simplest method is by using the resource
editor in Microsoft Visual Studio® or one of the many dialog box editors. Use these tools to drag and
drop controls onto a window or dialog box, which in X Windows is a widget itself. In Win32, controls
are also windows in every respect.

Using a dialog editor produces a resource file with the extension .rc, for example MyProgram.rc.

The following code is a small part of a resource file, and shows the definition of a dialog box with several
controls:

//
//
// Dialog
//
EXAMPLE_DIALOG DIALOG DISCARDABLE 0, 0, 267, 161
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION " Mission Setup "
FONT 8, "MS Sans Serif"
BEGIN
 PUSHBUTTON "&Quit",IDC_EXIT,210,135,50,15
 GROUPBOX " Select Mission ",IDC_STATIC,5,5,100,55
 CONTROL "Destroy Planet",IDC_DESTROY_PLANET,"Button",
 BS_AUTORADIOBUTTON | WS_GROUP,10,20,62,10
 CONTROL "Destroy Star",IDC_DESTROY_STAR,"Button",
 BS_AUTORADIOBUTTON,10,35,55,10
 EDITTEXT
IDC_AUTHORIZATION_CODE,190,85,60,14,ES_AUTOHSCROLL
 LTEXT "Authorization Code
:",IDC_TARGET_TEXT,120,85,65,13
 PUSHBUTTON "&Attack",IDC_ATTACK,155,135,50,14
 LISTBOX IDC_TARGET_LIST,5,90,100,60,LBS_NOINTEGRALHEIGHT
|
 WS_VSCROLL | WS_TABSTOP
 LTEXT "Select Target",IDC_STATIC,5,75,100,15
 GROUPBOX " Selected Mission Parameters
 ",IDC_STATIC,115,10,145,
 110
 LTEXT "Mission :",IDC_STATIC,120,35,60,8
 LTEXT "Target :",IDC_STATIC,120,60,60,8
 EDITTEXT IDC_MISSION_VALUE,190,35,60,14,ES_AUTOHSCROLL |
 ES_READONLY
 EDITTEXT IDC_TARGET_VALUE,190,60,60,14,ES_AUTOHSCROLL |
 ES_READONLY
END

The Rc.exe utility compiles the resource file that contains this definition, and the results are linked
together with the executable file.

The following line of code creates the dialog box and all the controls that it contains. Notice that the
second parameter is the name of the dialog box as it appears in the first line of the resource text.

 /*
 ** Create modeless dialog box.
 */
 hExampleDlg = CreateDialog(hInstance,
 MAKEINTRESOURCE(EXAMPLE_DIALOG),

Page 13 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 (HWND)NULL,
 (DLGPROC)ExampleDlgProc);

In the Microsoft Platform SDK, the RC utility and the help file for it are found in the Microsoft Platform
SDK\Bin directory. The help file Rc.hlp describes all the necessary parts of the resource file, which is
officially referred to as the "resource definition script."

In Visual Studio, the Rc.exe and Rc.hlp files are found in the Microsoft Visual
Studio\Common\MSDev98\Bin directory.

The second method is to call CreateWindow() with the necessary parameters to produce the desired
control at the desired location inside a parent window.

An X Windows example is as follows:

thisButton =
 XtVaCreateManagedWidget("Fire Phasers", <-- button text
 commandWidgetClass, <-- the type of widget
 parentWidget, <-- parent widget
 NULL);

A Win32 example using GDI is as follows:

HWND handleToThisButton;

handleToThisButton =
 CreateWindow("BUTTON", <-- the type of control
 "Fire Phasers", <-- button text
 WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON, <-- the button style
 XpositionInParent,
 yPositionInnParent,
 BUTTONWIDTH,
 BUTTONHEIGHT,
 handleOfParentWindow, <-- parent window
 (HMENU)NUMBER_USED_TO_ID_THIS_CONTROL,
 hInst,
 NULL);

Identifying a Control

To communicate with or respond to a control, it is necessary to identify it. This is done using the window
handle and a unique ID associated with the control. The handle to a control can be used just as a handle to
any window. For example, calling SetWindowPos() with the control's window handle can move or make
the control larger. Use the ID in the WindProc() switch statement to send or capture messages to and
from the control.

The following API calls use the ID of the control along with the handle of the parent window:

l SetDlgItemText()
l GetDlgItemText()
l GetDlgItemInt()
l SetDlgItemInt()

If the developer uses CreateWindow() to build the control, both identification pieces are known.

Page 14 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

CreateWindow() returns the handle to the control, and the ninth parameter in the call to CreateWindow
() is the unique ID the application associates with that control.

If the developer uses a resource editor to put the control in a containing window, the editor assigns a
resource ID to the control or the developer can enter this manually. In either case, as shown below, the
Resource.h file that corresponds to the .rc file contains the ID number.

l GetDlgCtrlID() returns the ID if it is passed the handle to the control.
l GetDlgItem() returns the handle if it is passed the ID of the control.

Communicating with a Control

After the application identifies a control, it can communicate with it. The following are some examples of
sending and receiving command/messages from controls:

//+
// programmatically add strings to the list box
//-
// Win32
//
SendMessage(handleToThisListBox, LB_ADDSTRING, 0, TEXT("String One")
);
SendMessage(handleToThisListBox, LB_ADDSTRING, 0, TEXT("String Two")
);
SendMessage(handleToThisListBox, LB_ADDSTRING, 0, TEXT("String
 Three"));

// X11/Motif
//
XmString newString;

 newString = XmStringCreateLocalized("String One");
 XmListAddItem(listWidget, newString, 0);
 XmStringFree(newString);

 newString = XmStringCreateLocalized("String Two");
 XmListAddItem(listWidget, newString, 0);
 XmStringFree(newString);

 newString = XmStringCreateLocalized("String Three");
 XmListAddItem(listWidget, newString, 0);
 XmStringFree(newString);

//+
// programmatically force the current focus
// to this control, i.e., make the user select
// something now!
//-
// Win32
//
SetFocus(handleToThisListBox);

// Xlib
//
XSetInputFocus(display, listWidget, RevertToParent, timeNow);

//+

Page 15 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

// programmatically pick a string for them!
//-
// Win32
//
SendMessage(handleToThisListBox, LB_SETCURSEL, 2, 0);

// X11/Moif
//
XmListSelectPos(listWidget, 2, 0);

//+
// Controls can be managed in the WndProc() as follows
//
// Using the button created in the example above
//-
LRESULT CALLBACK WndProc(HWND hWnd,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
{
 switch (message) {

 case WM_COMMAND:

 switch (wParam) {

 //+
 // this message is received because
 // the button was clicked by
 // the user
 //-
 case NUMBER_USED_TO_ID_THIS_CONTROL :
 doSomethingWhenButtonIsPressed();
 break;

Device Management

User interface devices include keyboards and mouse devices, tablets, touchpads and other devices. The
most used devices in many applications are the mouse and the keyboard.

Capturing Mouse Events

There are more than 30 mouse input messages. These are broken into two cases: client-area mouse
messages and nonclient-area mouse messages. A window receives client-area mouse messages when a
mouse event occurs in that window's client area. The file Winuser.h (included by Windows.h) defines
these message values, as shown in Table 3.

Table 3. Mouse event definitions

Message Meaning
WM_LBUTTONDBLCLK The left mouse button was double-clicked.
WM_LBUTTONDOWN The left mouse button was pressed.
WM_LBUTTONUP The left mouse button was released.
WM_MBUTTONDBLCLK The middle mouse button was double-clicked.
WM_MBUTTONDOWN The middle mouse button was pressed.

Page 16 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Nonclient-Area Mouse Messages

A window receives nonclient-area mouse messages when a mouse event occurs in the window but
outside the client area. The nonclient area includes the border, the title bar, any scroll bars, a menu and
minimize or maximize buttons. Each client-area message has a corresponding nonclient-area message.
Nonclient-area messages are defined by including NC in its name, for example, WM_NCLBUTTONUP.

The lParam member of the MSG structure consists of two SHORT values representing the POINTS
structure shown in the following listing. This can give the current location of the mouse pointer. For
client-area messages, the (x,y) pair is relative to the window's client area. For non-client–area messages,
the (x,y) pair is relative to the upper left corner of the screen.

typedef struct tagPOINTS {
 SHORT x;
 SHORT y;
} POINTS, *PPOINTS;

The following code shows a message loop in WinMain() that captures client-area mouse messages and
then determines the (x,y) coordinates of the mouse pointer. (The following example shows only the code
relevant to the message loop.)

int APIENTRY WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow)
{

 MSG msg;
 POINT mouseXY;

...

 while (GetMessage(&msg, NULL, 0, 0)) {

 switch (msg.message) {

 case WM_LBUTTONDOWN:
 case WM_LBUTTONUP:

 mouseXY.x = (SHORT) (LOWORD(msg.lParam));
 mouseXY.y = (SHORT) (HIWORD(msg.lParam));
 break;

WM_MBUTTONUP The middle mouse button was released.
WM_RBUTTONDBLCLK The right mouse button was double-clicked.
WM_RBUTTONDOWN The right mouse button was pressed.
WM_RBUTTONUP The right mouse button was released.
WM_XBUTTONDBLCLK Windows 2000 or Windows XP: An X mouse button

was double-clicked.
WM_XBUTTONDOWN Windows 2000 or Windows XP: An X mouse button

was pressed.
WM_XBUTTONUP Windows 2000 or Windows XP: An X mouse button

was released.

Page 17 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 default :
 break;
 }

 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

...

}

The following code shows how to process client-area mouse messages in the WndProc() function. (This
snippet includes only code that shows where to retrieve the mouse event information.)

LRESULT CALLBACK WndProc(HWND hWnd,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
{
 POINT mouseXY;

 switch (message) {

 case WM_LBUTTONDOWN:
 case WM_LBUTTONUP:

 //+
 // The windowsx.h header must be included to use the
 // GET_X_LPARAM and GET_Y_LPARAM
 // macros
 //-
 mouseXY.x = GET_X_LPARAM(lParam);
 mouseXY.y = GET_Y_LPARAM(lParam);

 break;

...
}

This is a very similar process in Xll as shown in this code:

void main() {

 Display *xdisplay;
 XEvent xEvent;
 int mouseX;
 int mousey;

 while (1) {

/* wait for next event */
 XNextEvent (xdisplay, &xevent);

 switch (xevent.type) {

 case ButtonPress:
 mouseX = xevent.xbutton.x;
 mousey = xevent.xbutton.y;

Page 18 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 break;

 }

Capturing Keyboard Events

A scan code identifies each physical key on the keyboard. The device driver responsible for servicing the
keyboard maps this number to a virtual-key code. The include file Winuser.h defines these virtual key
codes. After mapping the scan code, the system places a message that includes the scan code and virtual
key code along with other information in the system message queue. Some additional system processing
takes place, then the system sends the keyboard message to the process that has the keyboard focus.

Pressing a key causes a WM_KEYDOWN or WM_SYSKEYDOWN message to be placed in the thread
message queue attached to the window that has the keyboard focus. Releasing a key causes a
WM_KEYUP or WM_SYSKEYUP message to be placed in the queue.

The system posts a WM_CHAR message to the window with the keyboard focus when the
TranslateMessage() function translates a WM_KEYDOWN message. The WM_CHAR message
contains the character code of the key that was pressed.

The following code snippet shows how to manually catch and process keystrokes:

//+
// contrived union used only to show how the bits of the
// lParam parameter are arranged
// when handling WM_KEYDOWN messages
//-
typedef union {

 struct {
 unsigned long repeatCount :16;
 unsigned long scanCode :8;
 unsigned long extendedChar :1;
 unsigned long reserved :4;
 unsigned long altKeyDown :1;
 unsigned long previousState :1;
 unsigned long transition :1;
 }bits;

 LPARAM lParam;

}tyKeyData;

//+
// Win32 Application Window Proc
//-
LRESULT CALLBACK WndProc(HWND hWnd,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
{

 tyKeyData keyData;
 TCHAR characterCode;

 switch (message) {

Page 19 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 case WM_SYSKEYDOWN :
 case WM_KEYDOWN :

 //+
 // just for clarity showing what is in
 // the wParam parameter when WM_KEYDOWN is
 // sent to the window proc
 //-
 characterCode = ((TCHAR)(wParam));

 //+
 // the tyKeyData union is defined above
 // this union displays how the bits are defined
 //-
 keyData.lParam = lParam;

 if (keyData.bits.altKeyDown) {

 //+
 // using the keyboard hardware scan code
 // to determine what key was pressed
 //-
 switch (keyData.bits.scanCode) {
 case 0x3B : // <Alt-F1>
 break;

 case 0x3C : // <Alt-F2>
 break;

 default :
 break;
 }

 }
 else {

 //+
 // VK_XX Key Codes are found in winuser.h
 //
 // These are not the keyboard hardware scan codes!!!
 //
 // using the wParam to determine
 // what key was pressed
 //-
 switch (characterCode) {
 case VK_F1 : // <F1>
 break;

 case VK_F2 : // <F2>
 break;

 default :
 break;
 }

 }

 break;

 case WM_CHAR :

Page 20 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 characterCode = ((TCHAR)(wParam));

 switch (characterCode) {

 //+
 // VK_XX codes can be used here
 // VK_XX Key Codes are found in winuser.h
 //-
 case 0x08: // backspace
 case 0x0A: // linefeed
 case 0x1B: // escape
 break;

 case VK_LEFT : // left arrow
 case VK_UP : // up arrow
 case VK_INSERT : // the insert key
 break;

 //+
 // convert TAB to Spaces
 //-
 case 0x09: // tab

 for (int i = 0; i < 4; i++)
 SendMessage(hWnd, WM_CHAR, 0x20, 0);

 return 0;

Keyboard Focus

Keyboard focus is a temporary property of a window or widget. At any given time, only one component
can listen to the keyboard for events. The window or widget that is listening is said to have the current
focus, keyboard focus, or just focus.

Processing focus in a Win32-based application involves processing the WM_KILLFOCUS and
WM_SETFOCUS Windows Messages. This is similar to using XmNfocusCallback and
XmNlosingFocusCallback for focus callbacks setup with in X/Motif.

The following code fragment shows the window procedure for a subclassed "button" that is handling
focus messages:

LRESULT CALLBACK CSoftKeyProc(HWND hWnd,UINT iMsg, WPARAM
wParam,LPARAM lParam)
{
 LRESULT lResult = FALSE;

 //+
 // this is a trick to retrieve data (in this case a pointer)
 that is attached to this window object.
 // SetWindowLongPtr() was used to initially attach this data to
 the window. The reason for this
 // being used here is that this function may be the callback for
 any number of these type
 // objects and this data is "state" for this particular instance
 //-

Page 21 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 CvtSoftKey *pSoftKey = (CvtSoftKey *)GetWindowLongPtr(hWnd, 0);

 switch (iMsg) {
 default :
 break;

 //+
 // this window (button in this case) is receiving the focus
 // so we can do whatever processing we like
 // Draw a new border -- Highlight the text -- whatever!
 //-
 case WM_SETFOCUS :
 lResult = pSoftKey->OnSetFocus(hWnd,iMsg,wParam,lParam);
 break;

 //+
 // this window (button in this case) is losing focus
 //-
 case WM_KILLFOCUS :
 lResult = pSoftKey->OnKillFocus(hWnd,iMsg,wParam,lParam);
 break;
 }
 return DefWindowProc(hWnd,iMsg,wParam,lParam);
}

Table 4 shows functions to use for getting current focus.

Table 4. Functions for getting current focus

Table 5 shows functions to use for setting current focus.

Table 5. Functions for setting current focus

Creating Keystrokes, Mouse Motions, and Button Click

A developer can simulate keystrokes, mouse motions, or button clicks by using the SendInput() function
to serially insert events into the mouse or keyboard stream.

For additional information about handling the keyboard, search the MSDN Web site for keybd_event,
GetRawInputData, GetKeyState, GetAsyncKeyState, GetKeyboardState and MapVirtualKey().

Displaying Text

X Windows Win32
No equivalent GetActiveWindow()
XGetInputFocus() GetForegroundWindow()
XmGetFocusWidget() GetFocus()

X Windows Win32
No equivalent SetFocus()
No equivalent SetActiveWindow()
XSetInputFocus() SetForegroundWindow()

Page 22 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Text can be surprisingly complex. To make the visual display of the text as readable as possible requires
creation and use of fonts, then decisions about mapping modes, kerning and more.

Using Fonts

Fonts control the display characteristics of text. An X Windows client application can use the
XLoadQueryFont() and XSetFont() functions to apply a font to a given graphics context (GC), as
shown in the following code:

#define FONT1 "-*-lucida-medium-r-*-*-12-*-*-*-*-*-*-*"

Font font1;
XFontStruct *font1Info;

main() {

 Display *pDisplay;
 int iScreen;
 GC gc;

 pDisplay = XOpenDisplay("myDisplay");
 iScreen = DefaultScreen(pDisplay);

 //+
 // get the Graphics Context
 //-

gc = DefaultGC(pDisplay,iScreen);

 //+
 // attempt to load the font
 //-

font1Info = XLoadQueryFont(pDisplay,FONT1);
 font1 = font1Info->fid;

 //+
 // Set the font in the GC
 //-

XSetFont(pDisplay, gc, font1);

...

...

A Win32-based application follows much the same logic. That is, it creates or selects a font, retrieves a
device context (DC), and then selects the font object to that DC.

#define FONT1 TEXT("Lucida Console");

HFONT hFont1;

void fontDemo(HWND hWnd)
{
 HDC hDC;
 HFONT hOldFont;

 //+
 // get the Device Context
 //-

hDC = GetDC(hWnd);

Page 23 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 //+
 // attempt to load the system font
 //-

hFont1 = (HFONT)GetStockObject (SYSTEM_FONT);

 //+
 // Set the font in the GC
 //-

hOldFont = (HFONT)SelectObject(hDC, hFont1);

…

Table 6 shows how to reference fixed font types.

Table 6. Fixed font references

Note Win32 provides several utilities for adding and editing fonts.

The Eudcedit.exe utility, which comes with the operating system, allows the user to create
unique characters such as logos and special characters. Eudcedit Help describes how to
create, store, and use these characters in the font library.

The Charmap.exe utility, which comes with the operating systems, allows the user to view,
find, and copy characters from the Windows, MS-DOS and Unicode character sets. Charmap
Help describes how to do this.

The Fontedit.exe utility, which comes with Visual Studio, allows the user to create and edit
raster fonts.

Font Reference Font Type
ANSI_FIXED_FONT Windows fixed-pitch (monospace) system font.
ANSI_VAR_FONT Windows variable-pitch (proportional space) system

font.
DEVICE_DEFAULT_FONT Microsoft Windows NT®, Windows 2000, or

Windows XP operating system: Device-dependent
font.

DEFAULT_GUI_FONT Default font for user interface objects such as menus
and dialog boxes. This is Microsoft Sans Serif.
Compare this with SYSTEM_FONT.

OEM_FIXED_FONT Original equipment manufacturer (OEM)-dependent
fixed-pitch (monospace) font.

SYSTEM_FONT System font. By default, the system uses the system
font to draw menus, dialog box controls, and text.
Windows 95/98 or Windows NT: The system font is
Microsoft Sans Serif.
Windows 2000 or Windows XP: The system font is
Tahoma.

SYSTEM_FIXED_FONT Fixed-pitch (monospace) system font. This stock
object is provided only for compatibility with 16-bit
Windows earlier than version 3.0.

Page 24 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Creating Fonts

Developers might want to create fonts to use in an application. The short example in this section uses the
font specified by SYSTEM_FONT, which duplicates the default, although developers are likely to use
something more creative. The Win32 CreateFont(), CreateFontIndirect() and CreateFontIndirectEx()
functions provide the ability to create logical fonts based on the fonts loaded on the system.

#define MY_FONT_FACE TEXT("Lucida Console")
//+
// fontAttribute Option Bits
//-
#define fontAttribute_BOLD 0x01
#define fontAttribute_CROSSED_OUT 0x02
#define fontAttribute_UNDERLINED 0x04
#define fontAttribute_ITALIC 0x08

typedef struct {
 unsigned char fontSize;
 unsigned char fontStyle;
 TCHAR *fontFace;
} tyFONT_ATTRIBUTE;

HFONT createFont(tyFONT_ATTRIBUTE *fontAttributeObject)
{

 HFONT hFont;
 LOGFONT lf;

 //+
 // these are completely arbitrary values for this example code.
 // they simply associate a width and height with a
 // font size number found in the tyFONT_ATTRIBUTE struct.
 //
 // For example fontSize == 2 (used to index these two arrays)
 // will produce a 12x8 font
 //-
 int fontHeight[] = {8,8,12,16,16,24,32,
 32,48,64,64,96,128,128,192};
 int fontWidth [] = {6,8, 8,12,16,16,24, 32,32,48,64,64,
 96,128,128};

 //+
 // pick a font face
 //-
 lstrcpy(lf.lfFaceName, fontAttributeObject->fontFace);

 //+
 // protect against running out of the arrays above
 // and pick a default behavior of "2"
 //-
 if (fontAttributeObject->fontSize > 14)
 fontAttributeObject->fontSize = 2;

 if (fontAttributeObject->fontStyle & fontAttribute_BOLD)
 lf.lfWeight = FW_MEDIUM;
 else
 lf.lfWeight = FW_LIGHT;

Page 25 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 lf.lfItalic = (unsigned char)(fontAttributeObject-
 >fontStyle &
 fontAttribute_ITALIC);

 lf.lfUnderline = (unsigned char)(fontAttributeObject-
 >fontStyle &
 fontAttribute_UNDERLINED);

 lf.lfStrikeOut = (unsigned char)(fontAttributeObject-
 >fontStyle &
 fontAttribute_CROSSED_OUT);

 lf.lfEscapement = 0;
 lf.lfOrientation = 0;
 lf.lfCharSet = ANSI_CHARSET;
 lf.lfClipPrecision = CLIP_DEFAULT_PRECIS;
 lf.lfQuality = DRAFT_QUALITY;
 lf.lfPitchAndFamily = FF_MODERN | FIXED_PITCH;

 lf.lfHeight = fontHeight [fontAttributeObject->fontSize];
 lf.lfWidth = fontWidth [fontAttributeObject->fontSize];

 hFont = CreateFontIndirect(&lf);

 return(hFont);
}

//+
// example using createFont()
//-
void fontDemo(HWND hWnd)
{

 HDC hDC;
 HFONT hOldFont;
 HFONT hFont1;
 tyFONT_ATTRIBUTE fontAttribute;

 //+
 // get the Device Context
 //-

hDC = GetDC(hWnd);

 //+
 // attempt to create a font
 //-

fontAttribute.fontSize = 2;
 fontAttribute.fontStyle = (fontAttribute_BOLD |
 fontAttribute_ITALIC);
 lstrcpy(fontAttribute.fontFace, MY_FONT_FACE);

 hFont1 = createFont(&fontAttribute);

 //+
 // Set the font in the GC
 //-

hOldFont = (HFONT)SelectObject(hDC, hFont1);

…
 …

Page 26 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

For more information about creating and using logical fonts in a Win32-based application, see The
Logical Font.

Device vs. Design Units

An application can retrieve font metrics for a physical font only after the font has been selected in a
device context. When a user selects a font in a device context, the system scales the font for the device.
The font metrics specific to the device are known as device units.

Portable metrics in fonts are known as design units. To apply to a specified device, convert design units
to device units by using the following formula:

DeviceUnits = (DesignUnits/unitsPerEm) * (PointSize/72) *
DeviceResolution

For a full explanation of device units, design units and pixels, see the operating system Help or search the
MSDN Web site.

Windows Character Data Types

Table 7 lists the Windows character types. Most of the pointer-type names begin with a prefix of P or LP.
For additional information about character sets used by fonts, see the operating system Help or search the
MSDN Web site.

Table 7. Windows character types

Reference Character Type
CHAR An 8-bit Windows (ANSI) character
LPCSTR Pointer to a constant null-terminated string of 8-bit Windows

(ANSI) characters
LPCTSTR LPCWSTR if UNICODE is defined, LPCSTR otherwise
LPCWSTR Pointer to a constant null-terminated string of 16-bit

Unicode characters
LPSTR Pointer to a null-terminated string of 8-bit Windows (ANSI)

characters
LPTSTR LPWSTR if UNICODE is defined, LPSTR otherwise
PCHAR Pointer to CHAR
PCSTR Pointer to a constant null-terminated string of 8-bit Windows

(ANSI) characters
PCTSTR PCWSTR if UNICODE is defined, PCSTR otherwise
PCWCH Pointer to a constant WCHAR
PCWSTR Pointer to a constant null-terminated string of 16-bit

Unicode characters
PSTR Pointer to a null-terminated string of 8-bit Windows (ANSI)

characters
PTCHAR Pointer to TCHAR
PTSTR PWSTR if UNICODE is defined, PSTR otherwise
PWSTR Pointer to a null-terminated string of 16-bit Unicode

characters

Page 27 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

A best practice with characters is to declare all characters and strings as TCHAR and use the TEXT()
macro to declare static strings. For more information about wsprintf() and the rest of the string functions,
see the operating system Help or search the MSDN Web site.

TCHAR myString[255];

wsprintf(myString,
 TEXT("This is a good example %d is a %s \n"),
 1950,
 TEXT("Year")
);

Drawing Text

Drawing text can be simple or complicated. Because simple is often better, this discussion starts with the
X Windows XDrawString() function and the Win32 TextOut() function. Both functions require a
context to draw on, the x and y coordinates, the string and the string length, in characters. The examples
in this section draw the string "Hello World" in the current font and colors at the specified coordinates.

It is often desirable to set a particular font or color before writing the text. These examples show how the
two systems perform these tasks.

A programmer can code font and text display in Win32 as follows:

#define rgbBlack (COLORREF)RGB(0x00,0x00,0x00)
#define rgbWhite (COLORREF)RGB(0xFF,0xFF,0xFF)
font = (HFONT)GetStockObject(OEM_FIXED_FONT);
oldFont = (HFONT)SelectObject(hdc, font); // save old font
SetTextColor (hdc, rgbBlack);
SetBkColor (hdc, rgbWhite);
TextOut(hdc, x, y, "Hello World", 11);

The Win32 code example above uses the COLORREF type, the RGB() macro, and the GetStockObject
() function. These are explained in the following list:

l The COLORREF value used in the Win32 example code is used to specify an RGB color and is
defined as shown here:

typedef DWORD COLORREF;
typedef DWORD *LPCOLORREF;

l The RGB macro selects a red, green, blue (RGB) color based on the arguments supplied and the
color capabilities of the output device, as shown here:

COLORREF RGB(
 BYTE Error! Hyperlink reference not valid., // red component
of color
 BYTE Error! Hyperlink reference not valid., // green component
of color
 BYTE Error! Hyperlink reference not valid. // blue component

TBYTE WCHAR if UNICODE is defined, CHAR otherwise
TCHAR WCHAR if UNICODE is defined, CHAR otherwise
WCHAR A 16-bit Unicode character

Page 28 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

of color
);

l The GetStockObject(int objectType) function retrieves a handle to one of the stock pens, brushes,
fonts, or palettes. The return value must be cast to the expected type, as shown here:

void foo() {
 HFONT hFont;
 HBRUSH hBrush;
 hfont = (HFONT)GetStockObject(DEFAULT_GUI_FONT);
 hBrush = (HBRUSH)GetStockObject(BLACK_BRUSH);
}

A programmer can code font and text display in X Windows as follows:

font = XLoadQueryFont (display, "fixed");
XSetFont (display, gc, font->fid);

XSetBackground(display, gc, WhitePixel(display, screen));
XSetForeground(display, gc, BlackPixel(display, screen));
XDrawString(display, d, gc, x, y, "Hello World", 11);

X Windows provides explicit definitions of 8-bit and 16-bit character functions with XDrawString() and
XDrawString16(). Likewise, Win32 provides TextOutA() for ASCII (8-bit characters) and TextOutW()
for Wide Char (16-bit UNICODE characters). The TextOut() function is actually a macro that resolves
correctly to TextOutA() or TextOutW() based on the status of the UNICODE definition, as follows:

#define UNICODE
#define _UNICODE

TextOut()… // this will result in TextOutW()

#undef UNICODE
#undef _UNICODE

TextOut()… // this will result in TextOutA()

One drawback of using XDrawString() and TextOut() is that nothing is done about erasing the
background. Continually outputting strings to the same x and y coordinates results in a jumble of
unreadable text strings one upon the other. The X Windows library provides the DrawImageString()
function, which calculates a rectangle containing the string and fills it with the background pixel color
before drawing the text in the foreground pixel color. Win32 supports the ExtTextOut() function to
provide this capability. Using the Win32 ExtTextOut() function requires the bounding rectangle to be
calculated and passed into the function. This requires knowledge about the current font and logical
display units.

Calculating Text Metrics

The X Windows programmer can rely on XTextWidth() to get the length of a character string in pixels.
The Win32 programmer must work a little harder to get this number.

Understanding mapping mode

First, it is necessary to understand mapping mode. The mapping mode defines the unit of measure used to

Page 29 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

transform page-space units into device-space units. It also defines the orientation of the device's x and y
axes.

A mapping mode is a scaling transformation that specifies the size of the units used for drawing
operations. The mapping mode can also perform translation. In some cases, the mapping mode alters the
orientation of the x and y axes in device space.

The default mapping mode is MM_TEXT. One logical unit equals one pixel. Positive x is to the right,
and positive y is down. This mode maps directly to the device's coordinate system.

The Win32 SetMapMode function sets the mapping mode of the specified device context, as shown in
the following code:

int SetMapMode(
 HDC hdc, // handle to device context
 int fnMapMode // new mapping mode
);

Ultimately, to calculate the size of a string in pixels it is necessary for the current mapping mode to be
MM_TEXT. The Win32 programmer can assume the current mapping mode is the default MM_TEXT,
set it to MM_TEXT by calling SetMapMode(), or make sure it is MM_TEXT by using GetMapMode()
to retrieve it. (For more information, search for MM_TEXT on the MSDN Web site,
http://msdn.microsoft.com/.)

Calculating character size and string length

The Win32 GetTextExtentPoint32() function returns the width and height of a string of text in logical
units, as shown in the following lines of code. (Recall that setting the mapping mode to MM_TEXT
returns logical units as pixels.)

BOOL GetTextExtentPoint32(
 HDC hdc, // handle to DC
 LPCTSTR lpString, // text string
 int cbString, // characters in string
 LPSIZE lpSize // string size
);

The size structure looks like the following and is defined in Windef.h:

typedef struct tagSIZE {
 LONG Error! Hyperlink reference not valid.;
 LONG Error! Hyperlink reference not valid.;
} SIZE, *PSIZE, *LPSIZE;

The Win32 GetTextMetrics() function fills a TEXTMETRIC structure with all the information about the
device context's currently selected font, as shown in the following lines of code. The programmer can use
this information to perform any number of scaling or text size calculations.

BOOL GetTextMetrics(

 HDC hdc, // handle to DC
 LPTEXTMETRIC lptm // text metrics
);

Page 30 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The TEXTMETRIC structure contains basic information about a physical font, as shown in the following
example. All sizes are specified in logical units; that is, they depend on the current mapping mode of the
display context.

typedef struct tagTEXTMETRIC {
 LONG tmHeight;
 LONG tmAscent;
 LONG tmDescent;
 LONG tmInternalLeading;
 LONG tmExternalLeading;
 LONG tmAveCharWidth;
 LONG tmMaxCharWidth;
 LONG tmWeight;
 LONG tmOverhang;
 LONG tmDigitizedAspectX;
 LONG tmDigitizedAspectY;
 TCHAR tmFirstChar;
 TCHAR tmLastChar;
 TCHAR tmDefaultChar;
 TCHAR tmBreakChar;
 BYTE tmItalic;
 BYTE tmUnderlined;
 BYTE tmStruckOut;
 BYTE tmPitchAndFamily;
 BYTE tmCharSet;
} TEXTMETRIC, *PTEXTMETRIC;

More Win32 Text Functions

The following Win32 functions are also useful for working with text:

l DrawText()
l CreateSolidBrush()
l GetSysColor()
l SetTextColor()
l GrayString()

This section discusses and shows examples for these functions.

The DrawText() function draws formatted text in the specified rectangle, as shown in the following
example. It formats the text according to the specified method, expanding tabs, justifying characters,
breaking lines, and so forth.

int DrawText(
 HDC hDC, // handle to DC
 LPCTSTR lpString, // text to draw
 int nCount, // text length
 LPRECT lpRect, // formatting dimensions
 UINT uFormat // text-drawing options
);

The CreateSolidBrush() function creates a logical brush that has the specified solid color, as shown in
the following example:

HBRUSH CreateSolidBrush(

Page 31 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 COLORREF crColor // brush color value
);

The GetSysColor() function retrieves the current color of the specified display element, as shown in the
following example. Display elements are the parts of a window and the Windows display that appear on
the system display screen.

DWORD GetSysColor(int nIndex);

The SetTextColor() function sets the text color for the specified device context to the specified color, as
shown in the following example:

COLORREF SetTextColor(
 HDC hdc, // handle to DC
 COLORREF crColor // text color
);

The following example incorporates the use of DrawText(), CreateSolidBrush(), GetSysColor() and
SetTextColor():

RECT myRectangle;
//+
// create a brush
//-
HBRUSH myBackgroundBrush =
 CreateSolidBrush(
 GetSysColor(COLOR_BACKGROUND) // color of system background
);

//+
// set the text color to the system's button text color
//-
SetTextColor(
 hdc,
 GetSysColor(COLOR_BTNTEXT) //color of text on buttons
);

// calculate myRectangle

//+
// fill in (erase) the area inside the rectangle with the
// system's background color
//-
FillRect(hdc, &myRectangle, myBackgroundBrush);

//+
// The DrawText function uses the device context's selected font,
text
// color, and background color to draw the text. Unless the
 DT_NOCLIP
// format is used, DrawText clips the text so that it does not
appear
// outside the specified rectangle.
//-
DrawText(hdc,
 myString,
 _tcsclen(myString), // use _tcsclen() vs. strlen()
 &myRectangle,

Page 32 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 (DT_CENTER | DT_SINGLELINE)
);

The GrayString() function draws gray text at the specified location, as shown in the following example.
The function draws the text by copying it into a memory bitmap, graying the bitmap and then copying the
bitmap to the screen. The function grays the text regardless of the selected brush and background.
GrayString() uses the font currently selected for the specified device context.

BOOL GrayString(
 HDC hDC, // handle to DC
 HBRUSH hBrush, // handle to the brush
 GRAYSTRINGPROC lpOutputFunc, // callback function
 LPARAM lpData, // application-defined data
 int nCount, // number of characters
 int X, // horizontal position
 int Y, // vertical position
 int nWidth, // width
 int nHeight // height
);

Text Widgets and Controls

A text widget or control is used to display, enter, and edit text. The exact functionality of a text widget or
control depends upon how its resources are set.

In X Windows, the widget functionality is set as shown in the following example:

text = XtVaCreateManagedWidget ("myTextWidget",
 asciiTextWidgetClass,
 parentWidget,
 XtNfromHoriz,
 quit,
 XtNresize,
 XawtextResizeBoth,
 XtNresizable,
 True,
 NULL);

In Motif, the widget functionality is set as shown in the following example:

main (int argc, char *argv[])
{
 Widget mainWidget;
 Widget textWidget;
 XtAppContext appContext;

 mainWidget =

 XtVaOpenApplication (&appContext,
 "TextExample",
 NULL,
 0,
 &argc,
 argv,
 NULL,
 sessionShellWidgetClass,
 NULL);

Page 33 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 (…)

textWidget =

 XmCreateText (mainWidget,"textWidget",NULL,0);

(…)

XtAppMainLoop(appContext);

}

In Win32 and GDI, the control functionality is set as shown in the following example:

//+
// Create an edit Control.
//-
HWND handleToThisEditControl;

handleToThisEditControl =

 CreateWindow(TEXT("EDIT"), //<-- the type of
control
 TEXT("Some Text"), //<-- edit control text

 (WS_CHILD |
 WS_VISIBLE |
 ES_READONLY |
 ES_LEFT |
 ES_UPPERCASE), //<-- the control
style

 XpositionInParent,
 yPositionInnParent,
 CONTROL_WIDTH_IN_DEVICE_UNITS,
 CONTROL_HEIGHT_IN_DEVICE_UNITS,
 handleOfParentWindow, //<-- parent window
 (HMENU)NUMBER_USED_TO_ID_THIS_EDIT_CONTROL,
 appContext,
 NULL);

//+
// Turn off Read Only
//-
SendMessage(handleToThisEditControl ,
 EM_SETREADOINLY,
 (WPARAM)FALSE, //<-- set read only false
 (LPARAM)NULL);

//+
// set the edit control's text
//-
SetWindowText(handleToThisEditControl, TEXT("Some New Text"));

//+
// retrieve the edit control's text as text
//-
GetWindowText(handleToThisEditControl,
 myStringBuffer,

Page 34 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 myStringBufferMaxSize);

//+
// retrieve the edit control's text as an integer
//-
myIntegerValue =
 GetDlgItemInt(handleOfParentWindow,
 NUMBER_USED_TO_ID_THIS_EDIT_CONTROL,
 &resultFlag, // did the translation succeed ?
 FALSE); // no this is an unsigned number

Drawing

Drawing functions set the way to present graphical information on the screen. These range from primitive
functions such as turning a pixel on or off, to complex 2-D and 3-D drawing functions. There are some
notable differences in how drawing works on X Windows and Win32 platforms.

Device Context

Applications on both platforms use a context to control how drawing functions behave. On X Windows
systems, this context is known as the graphics context (GC). On Win32-based GDI systems, this context
is known as the device context (DC).

The first difference is in where the operating system stores and manages drawing attributes such as the
width of lines or the current font.

In X Windows, these values belong to the graphics context. When using XCreateGC() or XtGetGC(), it
is necessary to provide a values mask and values structure. These values are used to store settings such as
line width, foreground color, background color, and font style.

The following code is an example of the process of setting the foreground and background colors:

GC gcRedBlue;
XGCValues gcValues;
unsigned long gcColorRed;
unsigned long gcColorBlue;
unsigned long gcColorWhite;
Widget myWidget;

int main (int args, char **argv)
{
 // initialize colors - widget - etc.

 gcValues.foreground = gcColorRed;
 gcValues.background = gcColorBlue;

 gcRedBlue = XtGetGC (myWidget, GCForeground | GCBackground,
 &gcValues);
}

Win32-based applications use a different approach. The device context is a structure that defines a set of
graphic objects and their associated attributes, as well as the graphic modes that affect output. To keep
this simple, the graphic objects include a font for displaying text, a pen for line drawing, and a brush for
painting and filling. To draw lines, rectangles, text, and so on, it is necessary to get or create one of these

Page 35 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

objects and select it into the desired DC.

Rather than create several specialized GC objects like X Windows does, Win32-based applications create
several drawing objects and then select them into the DC as required. This methodology is similar to
what an X Windows client application could do by getting a single GC and then repeatedly calling
XChangeGC().

The following code snippet shows a Win32-based application that creates several pens and then uses
them to draw lines and rectangles:

#define onePixel 1
#define threePixels 3

#define thinLine onePixel
#define thickLine threePixels

COLORREF colorRed;
COLORREF colorBlue;

void drawSomthing(HDC hDC)
{

 HPEN thinRedPen;
 HPEN thinBluePen;

 HPEN oldPen;
 int x;
 int y;

 // initialize colors - etc.

 //+
 // create two pens.
 // this could be done more statically somewhere so that
 // it would not be necessary to create them each time
 // this method is called.
 //-
 thinRedPen = CreatePen(PS_SOLID, thinLine, colorRed);
 thinBluePen = CreatePen(PS_SOLID, thinLine, colorBlue);
 x = 100;
 y = 200;

 //+
 // draw a line with the current pen,
 // whatever it is at this time for this DC
 //-
 LineTo(hDC, x,y);

 //+
 // make our pen the current pen for the DC
 // and save the existing one so we can put it back
 //-
 oldPen = (HPEN)SelectObject(hDC, thinRedPen);

 //+
 // draw a line with our pen
 //-
 LineTo(hDC, x,y);

Page 36 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 //+
 // make our other pen current in the DC.
 // we are not saving the old one.
 //-
 SelectObject (hDC, thinBluePen);

 //+
 // draw a line using our second pen
 //-
 LineTo(hDC, x, y);

 //+
 // put back the original pen
 //-
 SelectObject(hDC, oldPen);

 //+
 // get rid of our pen resources
 //-
 DeleteObject(thinRedPen);
 DeleteObject(thinBluePen);
}

Getting Win32 GDI Device Context (DC)

Win32-based applications can retrieve the device context from the window handle, as shown in the
following example:

void myFunction (HWND hWnd)
{
 //+
 // retrieve the DC of the
 // window referenced by hWnd
 //-
 hDC = GetDC(hWnd);

 // draw using the device context hDC

 //+
 // release the DC
 //-
 ReleaseDC(hWnd, hDC);

Win32-based applications can also retrieve the device context in the Windows Proc by using BeginPaint
() and EndPaint(), as shown in the following code:

LRESULT CALLBACK WndProc(HWND hWnd,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
{

 HDC hDC;
 PAINTSTRUCT ps;

 switch (message) {

Page 37 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 case WM_PAINT:

 //+
 // Retrieve the device context (DC)
 // for the window referenced by hWnd
 //-
 hDC = BeginPaint(hWnd, &ps);

 //+
 // draw with hDC or ps.hdc
 //-

 //+
 // always follow BeginPaint() with EndPaint()
 //-
 EndPaint(hWnd, &ps);

Creating Win32 GDI Device Context (DC)

It is often useful to draw in an off-screen buffer and then move that buffer into the display memory. This
hides the live drawing function calls from the user and eliminates "flicker" in the window.

To create this off-screen context

1. Calculate the width and height that are needed.
2. Get the DC of the target (dialog box, button, or any other window object).
3. Call CreateCompatibleDC.
4. Call CreateCompatibleBitmap.

 // m_hButton is the window handle to a button.
 // m_clientRect is a RECT structure.

 // Step 1. Calculate the size.
 GetClientRect(m_hButton, &m_clientRect);
 m_width = ((int)(m_clientRect.right - m_clientRect.left));
 m_height = ((int)(m_clientRect.bottom - m_clientRect.top));

 // Step 2. Get the DC of the target window.
 hdc = GetDC(m_hButton);

 // Step 3. Create a compatible device context.
 m_hdcMem = CreateCompatibleDC(hdc);

 // Step 4. Create a compatible bitmap - our X Windows drawable.
 m_hbmpMem = CreateCompatibleBitmap(hdc,m_width,m_height);

To use and display this off-screen bitmap

1. Select the compatible bitmap into the compatible device context.
2. Draw on that DC.
3. Get the target window DC.
4. Transfer the compatible memory image to the screen.
5. Select the old bitmap into the DC.

Page 38 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 // Step 1. Select the compatible bitmap into the compatible DC.
 // hbmpOld is a handle to a bitmap
 // m_hdcMem is the compatible device context
 // m_hbmpMem is the compatible bitmap
 hbmpOld = (HBITMAP)SelectObject(m_hdcMem, m_hbmpMem);

 // Step 2. Draw on that DC.
 // FillRect() cleans out the rectangle
 FillRect(m_hdcMem, &m_clientRect, hBackgroundBrush);

 // Draw a line
 LineTo(m_hdcMem, x,y);

 // Step 3. Get the target DC.
 targetDC = GetDC(hTargetWindow);

 // Step 4. Transfer the compatible image to the screen.
 // transfer everything to the screen
 // hdcMem is what we drew on
 //-
 BitBlt(targetDC,
 0,
 0,
 m_width,
 m_height,
 m_hdcMem,
 0,
 0,
 SRCCOPY);

 // Step 5. Put the old bitmap back into the compatible DC.
 SelectObject(m_hdcMem, hbmpOld);

 // based on program logic - Release the DC of the target window
 ReleaseDC(hTargetWindow, targetDC);

For additional information about Win32-based GDI device context, search the MSDN Web site
(http://msdn.microsoft.com/) for GetDC, CreateDC, CreateCompatibleDC, and DeleteDC.

Display and Color Management

X Windows and Win32-based GDI are both constrained by the physical limitations of the available
display hardware. One such limitation is the number of colors a display adapter is capable of showing.

All X Windows applications use a color map. This map can be shared or private. A shared color map is
used by all other applications that are not using a private map. Using a private map gives an application
better color control and potentially a greater number of colors. There is one problem with private maps:
When the mouse moves on or off the client by using a private map, the screen colors change.

Win32-based applications typically use color with no regard for the display device. If the application uses
a color that is beyond the capabilities of the display device, the system approximates that color within the
limits of the hardware. On display devices that support a color palette, applications sensitive to color
quality can create and manage one or more logical palettes.

A palette is conceptually similar to an X Windows color map. Both of these methodologies are used to

Page 39 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

"map" some desired colors onto the physical capabilities of the display hardware. For example, if a
Win32-based program needs more than 16 colors and is running on an 8-bits-per-pixel (bpp) display
adapter, the program must create and use a palette.

The Win32 system palette can be thought of as similar to an X Windows shared color map. A logical
palette created and realized by an application can be thought of as an X Windows private color map.

A Win32-based application that uses a logical palette exhibits some of the same behaviors as an X
Windows application that uses a private color map. The application that gets priority in color selection is
the one with the current focus. When the application that has the current focus calls RealizePalette(), the
system palette changes and the WM_PALETTECHANGED message is sent to all top-level and
overlapped windows. This message enables a window that uses a color palette but does not have the
keyboard focus to realize its logical palette and update its client area. The wParam parameter identifies
the owner window. Inspecting this value prevents the originating window from realizing a logical palette
over and over again upon receipt of this message.

Today, most display hardware is capable of 24-bit or better color depth. For palette examples, see the
many samples both on the MSDN Web site and in Microsoft Windows Platform SDK.

To create a logical color palette

1. Allocate a LOGPALETTE structure and assign values to it.
2. Call CreatePalette() with a pointer to the LOGPALETTE structure.
3. Call SelectPalette() by using the pointer returned from CreatePalette().
4. Call RealizePalette() to make the system palette the same as the DC.
5. Call UnrealizeObject() when finished with the palette.

To determine the capabilities of the hardware and calculate the best possible behaviors of the display, an
X Windows program can use functions such as DefaultColorMap(), DefaultVisual(), DisplayCells(),
DisplayPlanes(), XGetVisualInfo() or XGetWindowAttributes().

A Win32-based application can rely on GetDeviceCaps() for this information. The GetDeviceCaps()
function retrieves device-specific information for the specified device. The following code example
shows a few examples of device information that can be retrieved by using GetDeviceCaps(). For a full
list of the possible values of the nIndex parameter, see the operating system Help or search the MSDN
Web site (http://msdn.microsoft.com/).

int GetDeviceCaps(
 HDC hdc, // handle to DC
 int nIndex // index of capability
);

void myFunction(HWND hThisWindow)
{
 HDC hDC;

 hDC = GetDC(hThisWindow);

 widthOfScreenInPixels = GetDeviceCaps(hDC, HORZRES);
 numberOfColorPlanes = GetDeviceCaps(hDC, PLANES);
 numberOfColors = GetDeviceCaps(hDC, NUMCOLORS);
 numberOfFonts = GetDeviceCaps(hDC, NUMFONTS);

}

Page 40 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Drawing 2-D Lines and Shapes

The device context of a drawing surface contains attributes that directly affect how lines, curves, and
rectangles are drawn. These attributes include the current brush and pen and current position.

The default current position for any given DC is (0,0) in logical (world) 2-D space. The value of the
current position can be changed by calling MoveToEx(), as shown in the following code example. The
MoveToEx() function updates the current position to the specified point and optionally returns the
previous position. This function affects all drawing functions.

BOOL MoveToEx(
 HDC hdc, // handle to device context
 int X, // x-coordinate of new current position
 int Y, // y-coordinate of new current position
 LPPOINT lpPoint // old current position
);

The POINT structure defines the x and y coordinates of a point, as shown in the following code example:

typedef struct tagPOINT {
 LONG x;
 LONG y;
} POINT, *PPOINT;

Drawing lines

Two sets of line and curve drawing functions are provided in the Win32 GDI API. These two sets of
functions are identified by the letters, "To" at the end of the function name. Functions ending with "To"
use and set the current position. Those that do not end with "To" leave the current position as it was.

The LineTo function draws a line from the current position up to, but not including, the specified point,
as shown in the following code example:

BOOL LineTo(
 HDC hdc, // device context handle
 int nXEnd, // x-coordinate of ending point
 int nYEnd // y-coordinate of ending point
);

The PolylineTo function draws one or more straight lines that use and update the current position. A line
is drawn from the current position to the first point specified by the lppt parameter by using the current
pen. For each additional line, the function draws from the ending point of the previous line to the next
point specified by lppt, as shown in the following code example:

BOOL PolylineTo(
 HDC hdc, // handle to device context
 CONST POINT *lppt, // array of points
 DWORD cCount // number of points in array
);

The Polyline function draws a series of line segments by connecting the points in the specified array, as
shown in the following code example. The lines are drawn from the first point through subsequent points
by using the current pen. Unlike the LineTo() or PolylineTo() functions, the Polyline() function neither
uses nor updates the current position.

Page 41 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

BOOL Polyline(
 HDC hdc, // handle to device context
 CONST POINT *lppt, // array of endpoints
 int cPoints // number of points in array
);

The following X Windows example shows the use of XDrawLine():

int main (int argc, char **argv)
{
 XtToolkitInitialize ();

 myApplication = XtCreateApplicationContext ();

 myDisplay = XtOpenDisplay(myApplication,
 NULL,
 NULL,
 "XBlaat",
 NULL,
 0,
 &argc,
 argv);

 myWindow = RootWindowOfScreen(DefaultScreenOfDisplay (mydisplay));

 //+
 // now we need a surface to draw on
 //-
 myMap = XCreatePixmap (myDisplay,myWindow,64,64, 1);

 values.foreground =
 BlackPixel (myDisplay, DefaultScreen (myDisplay));

 myGC = XCreateGC (myDisplay, mySurface, GCForeground, &values);

 //+
 // draw two diagonal lines across the 64x64 surface
 //
 XDrawLine(myDisplay,mySurface,myGC,0,0,63,63);

 XDrawLine(myDisplay,mySurface,myGC,0,63,63,0);

…

}

The following Win32 example shows the use of MoveToEx() and LineTo():

void lineExampleIn64X64Window(HDC hDC, HPEN myBlackPen)
{
 HPEN oldPen;

//+
 // use a black pen
 //-

oldPen = (HPEN)SelectObject(hDC, myBlackPen);

 //+
 // set the current position.

Page 42 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 // this would not be necessary if it was
 // known that the current position
 // was already at (0,0).
 //-

MoveToEx(hDC, 0,0, NULL);

 //+
 // now the current position is at (63,63)
 //-

LineTo(hDC, 63,63);

 //+
 // set the current position to the lower left corner
 //-

MoveToEx(hDC, 0,63, NULL);

 //+
 // draw the second diagonal
 // and make the current position (63,0)
 //
 //-

LineTo(hDC, 63, 0);

 //+
 // put back the old pen
 //-

SelectObject(hDC, oldPen);

}

Drawing rectangles

In Win32, Rectangle shape is a filled shape. Filled shapes are geometric forms that the current pen can
outline and the current brush can fill.

There are five filled shapes:

l Ellipse
l Chord
l Pie
l Polygon
l Rectangle

In X Windows, the XRectangle shape is quite different from the Win32 equivalent. When porting
between the two, it is necessary to understand the conceptual difference. The X Windows version uses an
upper-left-corner point and the width and height. The Win32 version uses the upper left and lower right
points. This difference is also true for the XDrawRectangle() and Win32 Rectangle() functions.

The X Windows structure is as follows:

typedef struct {
 short x,y;
 unsigned short width,height;
} XRectangle;

Its Win32 equivalent is as follows:

Page 43 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

typedef struct _RECT {
 LONG left;
 LONG top;
 LONG right;
 LONG bottom;
} RECT, *PRECT;

The Rectangle() function draws a rectangle. The rectangle is outlined by using the current pen and filled
by using the current brush. Because it does not fill the rectangle, this is quite different from the
XDrawRectangle() function.

BOOL Rectangle(
 HDC hdc, // handle to DC
 int nLeftRect, // x-coord of upper-left corner of rectangle
 int nTopRect, // y-coord of upper-left corner of rectangle
 int nRightRect, // x-coord of lower-right corner of rectangle
 int nBottomRect // y-coord of lower-right corner of rectangle
);

Rectangle functions that fill the rectangle are:

l X Windows: XFillRectangle()
l Win32: Rectangle()
l Win32: FillRect()

Rectangle functions that draw the outline only are:

l X Windows: XDrawRectangle()
l Win32: FrameRect()

Note The Win32 functions Rectangle() and FillRect() differ in the parameters they take.
For additional information, see Visual Studio Help or the MSDN Web site,
http://msdn.microsoft.com/.

The following X Windows example demonstrates rectangle functions:

void drawSomeRectangles()
{

 //+
 // fill the rectangle and then draw a black border around it
 //-

XFillRectangle (myDisplay, mySurface, myWhiteGC, 0, 0, 31, 31);
 XDrawRectangle (myDisplay, mySurface, myBlackGC, 0, 0, 31, 31);

 //+
 // draw an empty rectangle ten pixels square
 //-

XDrawRectangle(myDislay, mySurface, myBlackGC, 0,0, 10,10);
}

The following Win32 example demonstrates rectangle functions:

void drawSomeRectangles()

Page 44 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

{
 RECT myRectangle;

 //+
 // fill the rectangle and then draw a black border around it
 // assume that the current pen in this DC is black and the
 // current brush is not
 //-

Rectangle(hDC, 0,0,31,31);

 //+
 // draw an empty rectangle ten pixels square
 // The FrameRect() function draws a border around the specified
 // rectangle by using the specified brush rather than the current
 // pen.
 //
 // The width and height of the border are always one logical unit.
 //-

myRectangle.Top = 0;
 myRectangle.Left = 0;
 myRectangle.Bottom = 10;
 myRectangle.Right = 10;

 FrameRect(hDC, &myRectangle, myBlackBrush);

}

Timeouts and Timers

Timers are required to determine and act on delays in user input. The functionality and differences
between X Windows timeouts and Win32 timers is discussed in the following sections.

X Windows Timeouts

An X Windows client program can use the XtAddAppTimeOut() and XtRemoveTimeOut() functions
with a callback to perform processing based an interval specified in milliseconds. The following code
shows an example of this:

//+
// perform task every one second
//-
void myTimerProc(Widget w,
 XEvent *event,
 String *pars,
 Cardinal *npars)
{

…
 …
}

//+
// start a 1 second timer
//-
void startTimer(XtIntervalId *timer)
{

Page 45 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 (*timer) = XtAppAddTimeOut(gContext, 1000, myTimerProc, NULL);
}

//+
// stop the timer
//-
void stopTimer(XtIntervalId * timer)
{
 if(*timer) {
 XtRemoveTimeOut(*timer);
 (*timer) = NULL;
 }
}

Win32 Timers

Windows timers can be used in two scenarios. First, as in the X Windows approach, a callback function
can be identified to execute at each timer interval. Second, a message (WM_TIMER) can be used to
process timer intervals.

The following example shows the callback version using Win32 timers:

//+
// perform task every 1 second
//-
void CALLBACK myTimerProc(HWND w,
 UINT timerMessage,
 UINT_PTR timerID,
 DWORD systemTime)
{

…
 …
}

//+
// start a 1 second timer
//-
void startTimer(UINT_PTR *timer, UINT_PTR timerID)
{
 (*timer) = SetTimer(hParentWindow, timerID, 1000, myTimerProc);
}

//+
// stop the timer
//-
void stopTimer(UINT_PTR *timer)
{
 if(*timer) {

KillTimer(hParentWindow, (*timer));
 }
}

The following example shows Win32 timers using WM_TIMER:

#define timer1 1
#define timer2 2

LRESULT CALLBACK WndProc(HWND hWnd,

Page 46 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 UINT message,
 WPARAM wParam,
 LPARAM lParam)
{

 switch (message) {

 case WM_CREATE :

 //+
 // create two timers
 //-

SetTimer(hWnd, timer1, 1000, (TIMERPROC) NULL);
 SetTimer(hWnd, timer2, 5000, (TIMERPROC) NULL);
 break;

 //+
 // wParam specifies that the timer identifier
 // returns zero (0) if this message is handled
 //-

case WM_TIMER

 switch (wParam) {

 case timer1 :

 // do timer 1 stuff

 break;

 case timer2 :

 // do timer 2 stuff

 break;

 default :
 break;
 }

 return (FALSE);

 case WM_DESTROY :

 //+
 // stop the two timers
 //-

KillTimer(hWnd, timer1);
 KillTimer(hWnd, timer2);

 PostQuitMessage(0);
 break;

…

Migrating Character-Based User Interfaces

Not all UNIX-based interfaces are graphical. Character-based interfaces were the original mainstay of
UNIX computing long before the graphical workstation was conceived. There are two options for

Page 47 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

character-based interfaces. Either a migration to the Interix environment can take place with minimal
change, or a graphical interface (Windows-based or HTML) can replace the character-based interface. A
preliminary port to POSIX smoothes the migration to Interix.

POSIX Terminal I/O

The POSIX termios structure and a new set of access calls replace the two traditional terminal hardware
interfaces, namely termio structures in System V and stty structures in BSD.

The POSIX input/output (I/O) model is very similar to the System V model. Two modes exist: canonical
and noncanonical. Canonical input is line-based, like BSD cooked mode. Noncanonical mode is
character-based, like BSD raw or cbreak mode. The Interix subsystem includes a true, noncanonical
mode, with support for cc_c[VMIN] and cc_c[VTIME].

The termios structure is defined in Termios.h, as shown in the following listing:

struct termios {
 tcflag_t c_iflag; /* input mode */
 tcflag_t c_oflag; /* output mode */
 tcflag_t c_cflag; /* control mode */
 tcflag_t c_lflag; /* local mode */
 speed_t c_ispeed; /* input speed */
 speed_t c_ospeed; /* output speed */
 cc_t c_cc[NCCS]; /* control characters */
};

The Interix SDK extends the POSIX.1 set of flags for c_iflag to include IMAXBEL and VBELTIME.
For c_cc, VMIN and VTIME do not have the same values as VEOF and VEOL. For a portable
application, however, a developer should take into consideration that VMIN and VTIME can be identical
to VEOF and VEOL on a POSIX.1 system.

Table 8 shows the 12 new functions that replace the terminal I/O ioctl() calls, which include ioctl(fd,
TIOCSETP, buf) and ioctl(fd, TIOCGETP, buf) or stty() and gtty(). They were changed because the
data type of the final argument for terminal I/O ioctl() calls depends on an action that makes type
checking impossible.

Table 8. Functions that replace terminal I/O ioctl()

Function Description
tcgetattr() Fetches attributes (termios structure)
tcsetattr() Sets attributes (termios structure)
cfgetispeed() Gets input speed
cfgetospeed() Gets output speed
cfsetispeed() Sets input speed
cfsetospeed() Sets output speed
tcdrain() Waits for all output to be transmitted
tcflow() Suspends transmit or receive
tcflush() Flushes pending I/O
tcsendbreak() Sends BREAK character
tcgetpgrp() Gets foreground process group identifier (ID)
tcsetpgrp() Sets foreground process group ID

Page 48 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

To get the window size, use the TIOCGWINSZ command for ioctl() or the winsize structure, which are
both supported.

Porting Curses and Terminal Routines to Interix

The Interix SDK libraries include Libcurses.a, a port of the ncurses package, and Libtermcap.a, termcap
routines. The Interix SDK also supports pseudoterminals. Porting such applications to Interix should be
straightforward, but note the following:

l The curses routines make use of the terminfo database, stored in /usr/share/terminfo. This location
is different from the location used in traditional systems. To link with the terminfo routines, link
with the curses library.

l Interix supports both the BSD /dev/ptynn and the System V /dev/ptmx methods for opening the
master side of a pseudoterminal. The System V method is slightly faster because the search for an
available master device is handled in the subsystem. Currently, the Interix subsystem supports 265
ptys named /dev/pty[p–zA–E][0–9a–f] on the master side. The corresponding subordinate side
names are /dev/tty[p–zA–E][0–9a–f].

l When using /dev/ptmx, the subordinate (slave) tty name can be obtained with ptsname(). BSD-
based ioctl() calls can be used with the pty master side.

l Provided that it is a session leader, a process without a controlling tty acquires a controlling
terminal on the first open() call to a tty, unless NOCTTY is specified in the open() call.

Older character-based terminal applications placed the cursor on the physical display screen based on the
capabilities of the terminal. These capabilities were typically stored in the /etc/termcap file with around
15,000 lines of terminal capabilities.

The Console APIs can be used to create character-based applications with an addressable cursor.
SetConsoleCursorPosition(), WriteConsole(), and ReadConsole() are three functions among the many
available for use in the Console API.

Porting OpenGL Applications

OpenGL was originally developed by Silicon Graphics as a platform-independent set of graphics APIs.
This has made OpenGL an attractive option for developers who wish to target multiple platforms. Very
little, if any, platform-specific code is necessary to move a graphics application from one platform to
another. OpenGL extensions enable the segregation and handling of platform-specific code.

OpenGL is not, however, a set of windowing libraries. Most platform-specific code is encountered by
using windows that in a UNIX to Windows migration. An OpenGL application with windows uses either
the windowing system of the target platform (X Windows or Win32), or a cross-platform library such as
the OpenGL Graphics Library Utility Kit (GLUT). Because of licensing concerns, however, most
commercial applications incorporate the target platform windowing system. Therefore, when moving a
UNIX application that uses OpenGL to Windows, migration considerations similar to those for a non-
OpenGL application are likely to apply. The remainder of this section covers additional GUI
considerations for the migration of OpenGL applications.

In addition to the windowing system itself, OpenGL applications require a "context" to the host
windowing system. A special set of OpenGL extensions for window context has been developed. UNIX
applications typically use the GLX OpenGL extensions for X Windows. Microsoft Windows-based
applications typically use the WGL (wiggle) OpenGL extensions. In either case, these three main

Page 49 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

functions are required:

l Create context.
l X Windows: glXCreateContext
l Win32: wglCreateContext

l Make context current.
l X Windows: glXMakeCurrent
l Win32: wglMakeCurrent

l Delete context.
l X Windows: glXDeleteContext
l Win32: wglDeleteContext

If, after the migration, the application still needs support for UNIX, C/C++ pre-compiler directives
(#ifdef) can be used to target the appropriate platform.

The OpenGL API is a C library on both UNIX and Windows. FORTRAN applications can also use
OpenGL. To make it easier for FORTRAN applications to use OpenGL, a FORTRAN 90 Module often
exists to handle the translation between FORTRAN and C calling conventions. Most FORTRAN
compilers on Windows provide an optional FORTRAN module for OpenGL.

For additional information about OpenGL and platform-specific examples, see the SGI OpenGL Web site
or the opengl.org Web site.

GDI+

GDI+ is a class-based API for C/C++ programmers. It enables applications to use graphics and formatted
text on both the video display and the printer. Win32-based applications do not access graphics hardware
directly. Instead, GDI+ interacts with device drivers on behalf of applications. GDI+ is also supported by
the 64-bit Windows operating system.

To use GDI+, the developer must copy the Gdiplus.dll library to the system directory of the user's
computer. For information about which operating systems are required to use a particular class or
method, see the Requirements section of the documentation for the class or method.

All Windows-based applications can use GDI+, a new technology in the Windows XP and the Windows
Server 2003 family of operating systems. It is available for applications that run on the Windows NT 4.0
SP6, Windows 2000, Windows 98, and Windows Millennium Edition operating systems.

To download the latest redistributable, see Platform SDK Redistributables.

Mapping X Windows Terminology to Microsoft Windows

The graphical models of UNIX and Microsoft Windows are very different. There are conceptual
similarities, but little side-by-side mapping is possible. This section, however, describes as many
connections as possible.

In the headings of this section, the Win32 GDI term is followed by the corresponding X Windows term in
the following format:

X Windows term - Win32 term

Page 50 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Callback vs. WindowProc

Win32 uses the WindowProc function in the same capacity as Callback in X Windows. An X widget
can have a list of callbacks associated with it, but a Win32 window has a single entry point for handling
messages sent to it.

Client vs. Client Window

X Windows comprises a protocol that describes how a client interacts with a server that could be running
on a remote computer. How objects are drawn is the responsibility of the server. This provides device
independence for the client application because it is not responsible for knowing anything about the
physical hardware.

In the Microsoft Windows environment, the graphics device interface (GDI) API provides this layer of
device independence. Windows-based applications, like X clients, are not required to access graphics
hardware directly. GDI interacts with the hardware by using device drivers on behalf of the application.

A single Windows-based application can contain any number of separate windows. Each of these can
have a window frame, caption bar, system menu, minimize and maximize buttons, and its own main
display area, which is referred to as the client window.

Windows MDI (multiple document interface) applications have three kinds of windows: a frame window,
an MDI client window, and a number of child windows. The term "client window" takes on a special
meaning in this case. For additional information on MDI, see the MDI documentation on the MSDN Web
site or the Platform SDK.

Console Mode vs. Command Window

If X Windows or some other graphical user interface is not running on a UNIX system ,then a user must
work in text only or in console mode.

Think of Microsoft Windows as exactly the opposite. If a console is not running, the user must work in
GUI mode. Windows text-based mode is provided by running the Cmd.exe utility. This environment is
also referred to as a command window or the MS-DOS prompt. To run the Cmd.exe utility, click Start
and then click Run. Type cmd and then click OK. Or, on the keyboard, press the Windows key and then
pressR. The Run dialog box appears.

Developers can also use the Console API to build native Win32-based console applications. See Console
Functions

DPI vs. Screen Resolution

When starting an X Windows session, using the -dpi (dots per inch) option can improve appearance on
displays with larger resolutions, such as 1600x1200. The -dpi option also helps to work around possible
font issues.

A Windows-based application is usually built with no assumptions about the capabilities of the system it
will run on. System APIs are used to calculate proper scaling and other characteristics GetDeviceCaps()
is used to obtain the DPI of the system. GetSystemMetrics() and SystemParametersInfo() provide
information about practically every graphical element needed to calculate sizes for fonts and other

Page 51 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

graphical elements. for more information, search for "dots per inch" on the MSDN Web site.

Graphics Context vs. Device Context

The X Windows graphics context (GC) contains required information about how drawing functions are to
be executed. Win32 device context (DC) provides similar information. The functions used in each are
summarized in Table 9.

Table 9. X Windows GC and Win32 DC Comparable Functions

For more information about using DC and GC, see the sections under "Drawing" earlier in this chapter.

Resources vs. Properties

In X Windows terminology, a widget is defined by its resources. Width, height, color, and font are
examples of resources. Resources can be managed by using the XtVaCreateManagedWidget() method,
or by using resource files or XtVaGetValues() and XtVaSetValues().

In Win32 terminology, a control is defined by its properties. For example, a text control has the
following properties: Center Vertically, No Wrap, Transparent, Right Aligned Text, and Visible.

Resource Files vs. Registry

X Windows systems use configuration files referred to as resource files to store information about system
settings or preferences for a particular X Windows client.

In a Windows-based system, this type of information is stored in the registry. The registry stores data in a
hierarchically structured tree. There is a Win32 API with more than 40 functions to help access the
registry. For more information, search for "registry" or "registry functions" on the MSDN Web site.

Resource file can take on another meaning in Windows-based application development. Resources are
objects (like widgets), such as menus, dialog boxes, cursors, strings, bitmaps and user-defined data that
are used in an application. Resource files have an extension of .rc and contain a special resource language
(script) that is compiled by the resource compiler. The resulting file (.res) is then linked with the
containing application.

For more information, search for "using resources" on the MSDN Web site.

Root Window vs. Desktop Window

All X Windows windows are descendents of the root window. In the Windows environment, the desktop
window is a system-defined window that is the base for all windows displayed by all applications.

Xlib Win32
XtGetGC GetDC
XtReleaseGCReleaseDC
XCreateGC CreateDC
XFreeGC DeleteDC

Page 52 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

/bin vs. System32

In Windows, the /System32 directory is roughly equivalent to the /bin directory on a UNIX system. This
is where the system executable files are located. The /System32 directory is located in the system root
directory. To find system root, at a command prompt, type set and press Return. This displays a listing
of the current environment. In the list, locate SYSTEMROOT. Under SYSTEMROOT, there is an entry
similar to SYSTEMROOT=C:\WINNT. This is the system directory, and under that directory is
the /System32 directory.

/usr/bin vs. Program Files

The Program Files directory on a Windows-based system is similar to the /usr/bin directory on a UNIX
system. This is a default location for user applications. In Windows, a user can create more than one.
Each drive, for example, might have a Program Files directory. The system environment variable
ProgramFiles contains the path of one default location, for example, ProgramFiles=C:\ProgramFiles.

/usr/lib vs. LIB Environment Variable

In Windows, the path to user libraries can be anywhere. To manage this relationship, retrieve or set the
system environment variable LIB.

/usr/include vs. INCLUDE Environment Variable

In Windows, the path to user include files may be anywhere. To manage this relationship, retrieve or set
the system environment variable INCLUDE.

Pixmap or Bitmap vs. Bitmap

In X Windows, bitmap and pixmap have the same usage as Win32 bitmaps. For example, they can be
used as pictures, fill patterns, icons, and cursors. They are, however, very different in form.

The following X Windows example represents a simple 16x16 "X" figure:

#define simple_width 16
#define simple_height 16
static unsigned char simple_bits[] = {
 0x01, 0x80, 0x02, 0x04, 0x20, 0x08, 0x10, 0x10, 0x08, 0x20, 0x04,
 0x40, 0x02, 0x80, 0x01, 0x80, 0x01, 0x02, 0x20, 0x04, 0x10, 0x08,
 0x08, 0x10, 0x04, 0x20, 0x02, 0x40, 0x01, 0x80
};

The following Win32 example also represents a simple 16x16 "X" figure:

000000 42 4D 7E 00 00 00 00 00 00 00 3E 00 00 00 28 00
000010 00 00 10 00 00 00 10 00 00 00 01 00 01 00 00 00
000020 00 00 40 00 00 00 CA 0E 00 00 C4 0E 00 00 00 00
000030 00 00 00 00 00 00 00 00 00 00 FF FF FF 00 7F FE
000040 00 00 BF FD 00 00 DF FB 00 00 EF F7 00 00 F7 EF
000050 00 00 FB DF 00 00 FD BF 00 00 FE 7F 00 00 FE 7F
000060 00 00 FD BF 00 00 FB DF 00 00 F7 EF 00 00 EF F7
000070 00 00 DF FB 00 00 BF FD 00 00 7F FE 00 00

Page 53 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Window Manager vs. Windows 2000 and Windows XP

A special kind of X Windows client called the Window Manager provides a consistent working
environment in the root window.

In a Microsoft Windows environment, the operating system itself is the window manager and it provides
the desktop window. When a user logs on, the system creates three desktops within the WinSta0 windows
station. For more information, search for "WinSta0" on the MSDN Web site. Widgets or Gadgets—
Controls

Widgets are usually represented as controls in Win32-based applications. Like the X Windows
environment, Win32 offers many to choose from and there are a great number of third-party versions
available.

Sometimes deciding exactly what to call which is difficult. For example, X Windows dialog boxes are
widgets. In Win32, however, dialog boxes are not considered to be controls, although objects such as
dialog boxes, buttons, scroll bars and so on, are all windows.

X Library [Xlib] [X11] vs. Gdi32.lib

The X Windows library [Xlib][X11] is the lowest level library. Like Gdi32.lib, it provides all the basic
drawing functions.

X Toolkit [Intrinsics] [Xt] vs. User32.lib

The X Toolkit (Xt) is a library that accesses the lower-level graphics functionality of Xlib (X Windows)
and provides user interface elements such as menus, buttons, and scroll bars. It is similar to User32.lib
except that in the Win32 environment the look and feel of widgets or controls is provided in User32.lib
rather than by higher-level libraries.

Mapping X Windows Tools to Microsoft Windows

The primary tools for Win32 development are the Microsoft Platform SDK and Microsoft Visual Studio.
If the Microsoft Platform SDK is installed in the default location, tools are found in DriveLetter:\Program
Files\Microsoft Platform SDK\Bin. Also look for tools in the SDK Help or open Tools Help in
DriveLetter:\Program Files\Microsoft Platform SDK\Help directory. SDK Help and Tools Help provide
descriptions of all the SDK tools. In Microsoft Visual Studio, tools are found in DriveLetter:\Program
Files\Microsoft Visual Studio\Common\Tools. Online Help provides information on these tools.

Note In some cases, the X Windows tool and the Win32 tool have the same name but do
not perform the same function. The bitmap tool is one example of this.

Bitmap vs. Imagedit.exe and Shed.exe

The Imagedit.exe tool in the Platform SDK supports the same functionality as bitmap. In Visual Studio,
use the resource editor to create and edit bitmaps and icons. In MSDN, look for resource editors under
Visual Tools and Languages\Visual Studio 6.0 Documentation\Visual C++ Documentation\Using Visual
C++\Visual C++ User's Guide\Resource Editors.

Shed.exe is a Win32 tool included in the Platform SDK. It is used to edit hotspots. It is found in

Page 54 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

DriveLetter:\Program Files\Microsoft Platform SDK\Bin\WinNT. This Hotspot Editor is used to create
and edit hypergraphics. A hypergraphic is a bitmap that includes one or more hotspots.

Mspaint.exe can also be used to edit bitmaps. This utility is found in the /System32 directory.

Kodakimg.exe can be used to open, view, and edit a large variety of graphic files. This utility is found in
DriveLetter:\Program File\Windows NT\Accessories\ImageVue.

Manual Pages vs. Help

UNIX provides online documentation, which explains commands and procedures, in the form of manual
pages. To access a particular manual page, at the shell prompt, type man command_name.

Windows systems use the commands help and help CommandName. These provide a similar look and
feel to man on UNIX systems. However, most of Windows Help is found on the Start Menu under Help.
Additionally most if not all of the Microsoft development environment (MSDN, compilers, Visual
Studio, WORD) provide topical help.

At a command prompt, type help and press Return to see a list of available commands. Typing help
followed by the name of the command will provide information about the specified command. For
example, help setlocal.

In the system directory you will find a help directory. Here you will find compiled HTML format help on
all aspects of the Windows environment. Windows Advanced Server installations provide ntbooks.exe in
the system32 directory. This is an excellent help resource for all windows server commands.

grep vs. Qgrep.exe

The Qgrep utility can be found in the Platform SDK/Bin directory. It performs much like the UNIX grep
family of commands.

xcalc vs. Calc.exe

The Calc.exe utility is the Windows calculator program. It is located in the /System32 directory and
provides number base conversion between decimal, hexadecimal, and binary.

xclipboard vs. Clipbrd.exe

The Clipbrd.exe utility is found in the /System32 directory and provides the Win32 Clipboard viewing,
sharing, and saving functions.

xedit vs. Notepad.exe

The Notepad.exe utility is a simple text editor that can be used like xedit. Notepad is located in the
system root directory.

xev vs. Spy.exe or Spyxx.exe

The Spy.exe and Spyxx.exe utilities provide functionality like xev. These utilities allow selection of a
window and filtering of desired events and messages. The Spy.exe utility is provided in the Platform

Page 55 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

SDK and Spyxx.exe (also called spy++) is provided in Visual Studio.

xfd vs. Fontview.exe

The Fontview.exe command-line utility provides a view of fonts. For example, the following command
displays the Modern fonts:

fontview modern.fon

However, the Charmap.exe utility, a GUI utility found in the /System32 directory, is a much better
choice for viewing and manipulating fonts in a graphical manner.

xkill vs. Kill.exe

The Win32 Kill.exe utility provides the same functionality as the X Windows xkill command. The
Kill.exe utility is found in the /System32 directory.

When a user presses Ctrl+Alt+Del on a Windows-based system, a dialog box appears. Click the Task
Manager button to display the Task Manager dialog box. To display the (PID) process ID of the current
running tasks, click the Processes tab in the Task Manager dialog box. Locate the errant process in the
list and use that PID in the kill command, or simply click the process and then click End Process.

On a machine withPlatform SDK is installed, the user can track down and kill a troublesome process by
using the Pview.exe utility. This utility is found in the directory /Program Files/Microsoft Platform
SDK/Bin/WinNT.

xlsclients vs. Pview.exe

Like xlsclients, the Pview.exe utility lists the current running applications. Pview is a GUI application
that can be used to select the name of a computer to view.

xlsfonts vs. Fonts Control Panel Item

The Windows Control Panel Fonts item provides all font management functionality. For additional
information, see Fonts Help, in the /System/Help Fonts.chm file.

xmag vs. Magnify.exe or Zoomin.exe

The Win32 Magnify.exe utility is equivalent to X Windows xmag. Magnify is found in the /System32
directory on Windows 2000 and Windows XP.

On a machine with Microsoft Visual Studio or the Platform SDK installed, the user also has access to the
Zoomin.exe utility, which is found in Visual Studio at DriveLetter:\Program Files\Microsoft Visual
Studio\Common\Tools or in the Platform SDK at DriveLetter:\Program Files\Microsoft Platform
SDK\Bin.

xon vs. Start.exe or Remote.exe

Like the X Windows xon command, the Windows Start.exe utility starts a new command window to run
a specified program or command.

Page 56 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The Platform SDK provides the Remote.exe utility. Remote is a debugging utility, but proves to be
useful for much more than debugging. Use this application to start a server end and a client end, which
allows commands to be executed on a remote system. The Remote utility is found at
DriveLetter:/Program Files/Microsoft Platform SDK/Bin/Dbg.

xset client vs. Control Panel Items

Microsoft Windows provides a GUI interface for managing the keyboard, the mouse, and the video
display. The Control Panel includes an item for managing each of these devices.

The Mode, Color, and Graftabl commands can be used to perform some device management. To see a
list of features for these three commands, at a command prompt, type help mode, help color, or help
graftabl.

If a particular application requires advanced device control, that application must provide code to perform
this required functionality. Use the SystemParametersInfo() function to set or retrieve systemwide
parameters.

xterm vs. Hyperterm.exe

The Windows utility Hyperterm.exe, found in the /Program Files/Windows NT directory, is a terminal
emulator similar to the X Windows xterm command.

User Interface Coding Examples

The examples in this section show how to port an X Windows-based application to Microsoft Windows:

l X Windows "Hello World" example (including xHello.mak)
l Win32 "Hello World" example
l Win32 DialogWindow example

X Windows "Hello World" Example

The following example demonstrates the Hello World code for X Windows.

/*
** xHello.c
**
** One possible "Hello World" according to X11
**
*/
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Intrinsic.h>

char helloString[] = "Hello World";

int main(int argc, char **argv)
{
 int iScreen;
 unsigned long ulForeground;
 unsigned long ulBackground;

Page 57 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 Display *pDisplay;
 Window exampleWindow;
 GC gc;
 XSizeHints sizeHints;
 XWMHints wmHints;
 XTextProperty textProperty;
 XEvent xEvent;

 pDisplay = XOpenDisplay(NULL);
 iScreen = DefaultScreen(pDisplay);

 ulBackground = WhitePixel(pDisplay, iScreen);
 ulForeground = BlackPixel(pDisplay, iScreen);

 sizeHints.x = 0;
 sizeHints.y = 0;
 sizeHints.width = 250;
 sizeHints.height = 30;
 sizeHints.flags = (PPosition | PSize);

 wmHints.flags = InputHint;
 wmHints.input = True;

 exampleWindow = XCreateSimpleWindow(pDisplay,
 DefaultRootWindow(pDisplay
),
 sizeHints.x,
 sizeHints.y,
 sizeHints.width,
 sizeHints.height,
 2,
 ulForeground,
 ulBackground);

 XStringListToTextProperty(&argv[0],1,&textProperty);

 XSetWMName(pDisplay, exampleWindow ,&textProperty);

 XSetWMProperties(pDisplay,
 exampleWindow,
 &textProperty,
 NULL,
 NULL,
 0,
 &sizeHints,
 &wmHints,
 NULL);

 gc = XCreateGC(pDisplay, exampleWindow, 0,0);

 XSetBackground(pDisplay, gc, ulBackground);
 XSetForeground(pDisplay, gc, ulForeground);

 XSelectInput(pDisplay, exampleWindow, (KeyPressMask |
 ExposureMask));

 XMapWindow(pDisplay, exampleWindow);

 do {

Page 58 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 XNextEvent(pDisplay, &xEvent);

 if (xEvent.type == Expose) {

 if (xEvent.xexpose.count == 0) {

 XClearWindow(pDisplay, exampleWindow);

 XDrawImageString(pDisplay,
 exampleWindow,
 gc,
 (sizeHints.width/10),
 (sizeHints.height/2),
 helloString,
 (strlen(helloString)));

 }

 }

 } while (1);

 exit(0) ;

}

The xHello.mak file

The following example shows the X Windows xHello.mak file used with the previous Hello World code.

CC = cc
INSTALL = ./
INCLUDES = -I/usr/X11R6/include
LIBS = -L/usr/X11R6/lib -lX11 -lXaw -lXt -lXext
OBJS = xHello.o
xHello : ${OBJS}

 ${CC} -o xHello ${OBJS} ${INCLUDES} ${LIBS}

clean:
 rm -fr *.o xHello

Win32 "Hello World" Example

The following example demonstrates the corresponding Hello World code for Win32.

#include <windows.h> // basic windows functionality
#include <tchar.h> // required for _tcsclen() in WndProc

//+
// type TCHAR
//
// If the symbol _UNICODE is defined for your program,
// TCHAR is defined as type wchar_t, a 16-bit character type.
// Otherwise,
// TCHAR is defined as char, the normal 8-bit character type.
//
//

Page 59 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

// If you have MSDN installed, look for these and other
// papers and help files about UNICODE:
//
// "International Support in Microsoft Windows 2000"
// "Defining a Character Set"
// "Unicode Programming Summary"
// "Unicode and Character Sets"
//
//
// The TEXT macro identifies a string as
// Unicode when UNICODE or _UNICODE is defined during compilation.
// Otherwise, it identifies a string as an ANSI string.
//
//-
TCHAR *szAppName = TEXT("HelloWorld");
TCHAR *szTitle = TEXT("Win32 - Hello World");
TCHAR *szMessage = TEXT("Hello World!");

HINSTANCE hInst; // A sometimes useful global copy of our instance
handle

//+
//
// The WindowProc function is an application-defined
// function that processes messages sent to a window.
//
// The WNDPROC type defines a pointer to this callback function.
// WindowProc is a placeholder for the application-defined function
name.
//
// *** In the WinMain() function
// *** notice this line of code --> wc.lpfnWndProc =
 (WNDPROC)WndProc;
//
//-
LRESULT CALLBACK WndProc(HWND hWnd,
 UINT message,
 WPARAM uParam,
 LPARAM lParam)
{
 //+
 // A device context is a structure that defines a set of graphic
objects
 // and their associated attributes, as well as the
 // graphic modes that affect output.
 //
 // The graphic objects include:
 // a pen for line drawing,
 // a brush for painting and filling,
 // a bitmap for copying or scrolling parts of the screen,
 // a palette for defining the set of available colors,
 // a region for clipping and other operations,
 // a path for painting and drawing operations.
 //-
 HDC hDC; // Handle to the device context, such as the GC in an X11
app

 //+
 // The PAINTSTRUCT structure contains information for an
application.

Page 60 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 // This information can be used to paint the client area of a
 // window owned by that application.
 //
 //
 // typedef struct tagPAINTSTRUCT {
 // HDC hdc;
 // BOOL fErase;
 // RECT rcPaint;
 // BOOL fRestore;
 // BOOL fIncUpdate;
 // BYTE rgbReserved[32];
 // } PAINTSTRUCT, *PPAINTSTRUCT;
 //
 //-
 PAINTSTRUCT ps;

 //+
 // The RECT structure defines the coordinates of the
 // upper-left and lower-right corners of a rectangle.
 //
 // typedef struct _RECT {
 // LONG left;
 // LONG top;
 // LONG right;
 // LONG bottom;
 // } RECT, *PRECT;
 //-
 RECT rect;

 //+
 // This switch is used to catch and respond to messages sent to
 this window
 //
 // An X Windows program using XNextEvent() might use a do { ... }
 while(1); loop
 // to process events retrieved by XNextEvent().
 //
 // A Win32 program uses this function WndProc() and
 // this sort of switch(message){ .. }
 // architecture to asynchronously process "window Messages"
 //
 //-
 switch (message) {

 //+
 //
 // The WM_PAINT message is sent when the system or another
 // application makes a request to paint a portion
 // of an application's window.
 //
 // The message is sent when the UpdateWindow() or
 // RedrawWindow() function is called, or by the
DispatchMessage() function
 // when the application obtains a WM_PAINT message
 // by using the GetMessage() or PeekMessage() function.
 //
 //-
 case WM_PAINT:

 //+
 // The BeginPaint function prepares the specified window for

Page 61 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

painting
 // and fills a PAINTSTRUCT structure with information about the
painting.
 //-
 hDC = BeginPaint (hWnd, &ps);

 //+
 // NOTE ***
 //
 // More complex applications could/should call a painting
 function here
 // passing the HDC (hDC) or the PAINTSTRUCT (ps) as parameters.
 // The HDC (hDC) is a member of the PAINTSTRUCT (ps)
 //-
 //+
 // The GetClientRect function retrieves the coordinates of a
 // window's client area. The client coordinates specify the
 // upper-left and lower-right corners of the client area.
 //
 // Because client coordinates are relative to the
 // upper-left corner of a window's client area,
 // the coordinates of the upper-left corner are (0,0).
 //-
 GetClientRect(hWnd, &rect);

 //+
 // The DrawText function draws formatted text in the specified
rectangle.
 //
 // It formats the text according to the specified method
 // (expanding tabs, justifying characters, breaking lines, and
so forth).
 //
 //-
 DrawText(hDC,
 szMessage,
 _tcsclen(szMessage) ,
 &rect,
 DT_CENTER | DT_VCENTER | DT_SINGLELINE);

 //+
 // The EndPaint function marks the end of painting in the
specified window.
 //
 // This function is required for each call to the BeginPaint
function,
 // but only after painting is complete.
 //
 EndPaint(hWnd, &ps);

 break;

 //+
 // The WM_DESTROY message is sent when a window is being
destroyed.
 //
 // It is sent to the window procedure of the window being
destroyed
 // after the window is removed from the screen.
 //
 // This message is sent first to the window being destroyed and

Page 62 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

then
 // to the child windows (if any) as they are destroyed.
 //
 // During the processing of the message,
 // it can be assumed that all child windows still exist.
 //-
 case WM_DESTROY:

 //+
 // The PostQuitMessage function indicates to the system that a
 // thread has made a request to terminate (quit).
 // It is typically used in response to a WM_DESTROY message
 //-
 PostQuitMessage(0);
 break;

 //+
 // The WM_CLOSE message is sent as a signal that a
 // window or an application should terminate
 //-
 case WM_CLOSE:

 //+
 // The DestroyWindow function destroys the specified window.
 // The function sends WM_DESTROY and WM_NCDESTROY messages to
 // the window to deactivate it and remove the keyboard focus
from it.
 //
 // The function also destroys the window's menu,
 // flushes the thread message queue,
 // destroys timers, removes clipboard ownership,
 // and breaks the clipboard viewer chain
 // (if the window is at the top of the viewer chain).
 //
 // If the specified window is a parent or owner window,
 // DestroyWindow automatically destroys the associated
 // child or owned windows
 //
 // when it destroys the parent or owner window.
 //
 // The function first destroys child or owned windows,
 // and then it destroys the parent or owner window.
 //-
 DestroyWindow (hWnd);
 break;

 //+
 // Pass message on if unprocessed
 //-
 default:

 //+
 // The DefWindowProc function calls the default window
procedure
 // to provide default processing for any window messages
 // that an application does not process.
 //
 // This function ensures that every message is processed.
 // DefWindowProc is called with the same parameters
 // received by the window procedure

Page 63 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 //-
 return (DefWindowProc(hWnd, message, uParam, lParam));

 }

 return (0);
}

//+
// The WinMain function is called by the system as the
// initial entry point for a Windows-based application.
//
// Your WinMain should
//
// 1. initialize the application,
//
// 2. display its main window,
//
// 3. enter a message retrieval-and-dispatch loop that is the top-
level
// control structure for the remainder of the application's
execution.
//-
int APIENTRY WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow)
{

 HWND hWnd;

 //+
 // The MSG structure contains message information
 // from a thread's message queue.
 //
 // typedef struct tagMSG {
 // HWND hwnd;
 // UINT message;
 // WPARAM wParam;
 // LPARAM lParam;
 // DWORD time;
 // POINT pt;
 // } MSG, *PMSG;
 //
 //-
 MSG msg;

 //+
 // The WNDCLASS structure contains the window class attributes
that
 // are registered by the RegisterClass function.
 //
 // This structure has been superseded by the WNDCLASSEX structure
used
 // with the RegisterClassEx function.
 //
 // You can still use WNDCLASS and RegisterClass if you do not need
to set
 // the small icon associated with the window class.
 //

Page 64 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 // typedef struct _WNDCLASS {
 // UINT style;
 // WNDPROC lpfnWndProc;
 // int cbClsExtra;
 // int cbWndExtra;
 // HINSTANCE hInstance;
 // HICON hIcon;
 // HCURSOR hCursor;
 // HBRUSH hbrBackground;
 // LPCTSTR lpszMenuName;
 // LPCTSTR lpszClassName;
 // } WNDCLASS, *PWNDCLASS;
 //
 //-
 WNDCLASS wc;

 hInst = hInstance; // Store instance handle in our global variable

 //+
 // 1. Initialize
 //
 // register the window class (required)
 // Allocate global resources
 // start threads
 // connect to hardware etc.
 // register the window class for this application
 //-
 wc.style = CS_HREDRAW | CS_VREDRAW; // Class
style(s).
 wc.lpfnWndProc = (WNDPROC)WndProc; // Window
Procedure
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInstance;

 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
 wc.lpszMenuName = NULL;
 wc.lpszClassName = szAppName;
 wc.hIcon = NULL;

 //+
 // The RegisterClass function registers a window class
 // for subsequent use in calls to the CreateWindow or
 // CreateWindowEx function.
 //
 // Note The RegisterClass function has been
 // superseded by the RegisterClassEx function.
 // You can still use RegisterClass, however, if you do
 // not need to set the class small icon.
 //-
 RegisterClass(&wc);

 //+
 //
 // 2. Display the Main Window
 //
 // a. CreateWindow(), CreateWindowEx() or CreateDialog()
(required)
 // b. return false on failure
(required)

Page 65 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 // c. ShowWindow(); based on program logic
 // d. UpdateWindow();
 //
 //-
 hWnd = CreateWindowEx(0,
 szAppName,
 szTitle,
 WS_OVERLAPPEDWINDOW,
 0,
 0,
 250,
 250,
 NULL,
 NULL,
 hInstance,
 NULL
);

 if (!hWnd)
 return(FALSE);

 //+
 // The ShowWindow() function sets the specified window's show
state.
 //-
 ShowWindow(hWnd, nCmdShow);

 //+
 // The UpdateWindow() function updates the client area
 // of the specified window by sending a WM_PAINT message to
 // the window if the window's update region is not empty.
 //
 // The function sends a WM_PAINT message directly to
 // the window procedure of the specified window,
 // bypassing the application queue.
 //
 // If the update region is empty, no message is sent.
 //+
 UpdateWindow(hWnd);

 //+
 //
 // 3. Enter the message loop
 //
 // The GetMessage() function retrieves a message
 // from the calling thread's message queue.
 //
 // The function dispatches incoming sent messages
 // until a posted message is available for retrieval.
 //-
 while (GetMessage(&msg, NULL, 0, 0)) {

 //+
 // The TranslateMessage() function translates
 // virtual-key messages into character messages.
 //
 // The character messages are posted to the calling
 // thread's message queue, to be read the next time
 // the thread calls the GetMessage() or PeekMessage() function.
 //-
 TranslateMessage(&msg);

Page 66 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 //+
 // The DispatchMessage() function dispatches a message
 // to a window procedure. It is typically used to
 // dispatch a message retrieved by the GetMessage() function.
 //-
 DispatchMessage(&msg);
 }

 return (msg.wParam);

 lpCmdLine; // TRICK ***
 //
 // keep the compiler from complaining about unreferenced
parameter
 //

}

Win32 DialogWindow Example

The code in this section is based entirely on a single modeless dialog box. This type of implementation is
very quick to put together in Visual Studio by using the resource editor. This example demonstrates how
to communicate with many of the typical controls found in a Win32-based application.

// resource.h
//{{NO_DEPENDENCIES}}
// Microsoft Developer Studio generated include file.
// Used by DialogWindow.rc
//
#define EXAMPLE_DIALOG 103
#define IDC_EXIT 1000
#define IDC_RADIO1 1001
#define IDC_DESTROY_PLANET 1001
#define IDC_RADIO2 1002
#define IDC_DESTROY_STAR 1002
#define IDC_CHECK1 1003
#define IDC_CHECK2 1004
#define IDC_AUTHORIZATION_CODE 1005
#define IDC_TARGET_TEXT 1006
#define IDC_ATTACK 1007
#define IDC_TARGET_LIST 1008
#define IDC_MISSION_VALUE 1009
#define IDC_TARGET_VALUE 1010
#define IDC_M_P 1011

// Next default values for new objects
//
#ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_NEXT_RESOURCE_VALUE 106
#define _APS_NEXT_COMMAND_VALUE 40001
#define _APS_NEXT_CONTROL_VALUE 1012
#define _APS_NEXT_SYMED_VALUE 101
#endif
#endif

// DialogWindow.rc
//

Page 67 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

// Notice that EXAMPLE_DIALOG is the identifier of this template and
// is used in the call to CreateDialog(
 ,MAKEINTRESOURCE(EXAMPLE_DIALOG) ,,)
//
 #include "resource.h"
 #define APSTUDIO_READONLY_SYMBOLS
 #include "afxres.h"
 #undef APSTUDIO_READONLY_SYMBOLS

EXAMPLE_DIALOG DIALOG DISCARDABLE 0, 0, 267, 161
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION " Mission Setup "
FONT 8, "MS Sans Serif"
BEGIN
 PUSHBUTTON "&Quit",IDC_EXIT,210,135,50,15
 GROUPBOX " Select Mission ",IDC_STATIC,5,5,100,55
 CONTROL "Destroy Planet",IDC_DESTROY_PLANET,"Button",
 BS_AUTORADIOBUTTON | WS_GROUP,10,20,62,10
 CONTROL "Destroy Star",IDC_DESTROY_STAR,"Button",
 BS_AUTORADIOBUTTON,10,35,55,10
 EDITTEXT
IDC_AUTHORIZATION_CODE,190,85,60,14,ES_AUTOHSCROLL
 LTEXT "Authorization Code
:",IDC_TARGET_TEXT,120,85,65,13
 PUSHBUTTON "&Attack",IDC_ATTACK,155,135,50,14
 LISTBOX IDC_TARGET_LIST,5,90,100,60,LBS_NOINTEGRALHEIGHT
|
 WS_VSCROLL | WS_TABSTOP
 LTEXT "Select Target",IDC_STATIC,5,75,100,15
 GROUPBOX " Selected Mission Parameters
 ",IDC_STATIC,115,10,145,
 110
 LTEXT "Mission :",IDC_STATIC,120,35,60,8
 LTEXT "Target :",IDC_STATIC,120,60,60,8
 EDITTEXT IDC_MISSION_VALUE,190,35,60,14,ES_AUTOHSCROLL |
 ES_READONLY
 EDITTEXT IDC_TARGET_VALUE,190,60,60,14,ES_AUTOHSCROLL |
 ES_READONLY
END

// DialogWindow.c
//
#include <windows.h>
#include "resource.h"

/*
** Global Variables
*/
HWND hExampleDlg = 0; /* Handle to modeless dialog box
*/
HANDLE hInst;

//+
// Static strings used in list boxes
//-
TCHAR *PlanetList[] = {
 {TEXT("Mercury")},
 {TEXT("Venus ")},
 {TEXT("Earth ")},
 {TEXT("Mars ")},
 {TEXT("Jupiter")},

Page 68 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 {TEXT("Saturn ")},
 {TEXT("Neptune")},
 {TEXT("Uranus ")},
 {TEXT("Pluto ")},
 NULL
};

TCHAR *StarList[] = {
 {TEXT("Andromeda ")},
 {TEXT("51 Pegasi ")},
 {TEXT("70 Virginis ")},
 {TEXT("47 Ursae Majoris")},
 {TEXT("Beta Pictoris ")},
 {TEXT("G1229 ")},
 {TEXT("Rho 1 Cancri ")},
 NULL
};

//+
// The DialogProc function is an application-defined callback
// function used with the CreateDialog function.
//
// It processes messages sent to the dialog box.
//
// The DLGPROC type defines a pointer to this callback function.
// DialogProc is a placeholder for the application-defined function
name.
//
//-
BOOL APIENTRY ExampleDlgProc(HWND hDlg,unsigned iMessage, WORD
 wParam,LONG lParam)
{
 int x;
 LRESULT currentTarget;

 switch (iMessage) {

 //+
 // The WM_INITDIALOG message is sent to the dialog box
 // procedure immediately before a dialog box is displayed.
 //
 // Dialog box procedures typically use this message
 // to initialize controls and carry out any other initialization
 // tasks that affect the appearance of the dialog box.
 //-
 case WM_INITDIALOG :

 //+
 // The CheckRadioButton function adds a check mark to
 // the specified radio button in a group and removes a check
mark from
 // all other radio buttons in the group.
 //
 // If DialogWindow.rc is opened as a text file, the following
lines
 // can be found.
 //
 // GROUPBOX " Select Mission ",IDC_STATIC,5,5,100,55
 // CONTROL "Destroy Planet",IDC_DESTROY_PLANET,"Button",
 // BS_AUTORADIOBUTTON | WS_GROUP,10,20,62,10

Page 69 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 // CONTROL "Destroy Star",IDC_DESTROY_STAR,"Button",
 // BS_AUTORADIOBUTTON,10,35,55,10
 //
 // The GROUPBOX contains the two BS_AUTORADIOBUTTON controls.
 // This containment allows the radio buttons to be grouped
together
 //-
 CheckRadioButton(hDlg,
 IDC_DESTROY_PLANET,
 IDC_DESTROY_STAR,
 IDC_DESTROY_PLANET);

 //+
 // SendDlgItemMessage() sends a message to the designated
control.
 // In this case it is a listbox control and the LB_INSERTSTRING
message
 // is used to load a string in the list box.
 //
 // For details about this message/command look up
 LB_INSERTSTRING
 // in MSDN or Visual Studio Help
 //-
 for (x=0;PlanetList[x] != NULL;x++)
 SendDlgItemMessage(hDlg,
 IDC_TARGET_LIST,
 LB_INSERTSTRING,
 x,
 (LPARAM)PlanetList[x]);

 //+
 // An application sends an LB_SETCURSEL message to select a
string
 // and scroll it into view, if necessary.
 //
 // When the new string is selected, the list box removes
 // the highlight from the previously selected string.
 //-
 SendDlgItemMessage(hDlg,IDC_TARGET_LIST,LB_SETCURSEL,0,(LPARAM)0
);

 //+
 // The SetDlgItemText() function sets
 // the title or text of a control in a dialog box.
 //-
 SetDlgItemText(hDlg, IDC_TARGET_VALUE, PlanetList[0]);
 SetDlgItemText(hDlg, IDC_MISSION_VALUE, TEXT(" Destroy Planet")
);
 SetDlgItemText(hDlg, IDC_AUTHORIZATION_CODE, TEXT("JD12131950")
);

 break;

 //+
 // The WM_COMMAND message is sent when the user selects
 // a command item from a menu, when a control sends a
 // notification message to its parent window,
 // or when an accelerator keystroke is translated.
 //
 // In this example case

Page 70 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 //-
 case WM_COMMAND:

 switch (wParam) {

 //+
 // this message is received each time the user clicks
 // the IDC_DESTROY_PLANET radio button
 //-
 case IDC_DESTROY_PLANET :
 currentTarget = 0;
 SendDlgItemMessage(hDlg,
 IDC_TARGET_LIST,
 LB_RESETCONTENT,
 (WPARAM)0,
 (LPARAM)0);

 for (x=0;PlanetList[x] != NULL;x++)
 SendDlgItemMessage(hDlg,
 IDC_TARGET_LIST,
 LB_INSERTSTRING,
 x,
 (LPARAM)PlanetList[x]);

 SetDlgItemText(hDlg, IDC_MISSION_VALUE, TEXT(" Destroy
 Planet"));
 SetDlgItemText(hDlg, IDC_TARGET_VALUE,
PlanetList[currentTarget]);
 SendDlgItemMessage(hDlg,
 IDC_TARGET_LIST,
 LB_SETCURSEL,
 currentTarget,(LPARAM)0);

 break;

 //+
 // this message is received each time a user clicks
 // the IDC_DESTROY_STAR radio button
 //-
 case IDC_DESTROY_STAR :

 currentTarget = 0;
 SendDlgItemMessage(hDlg,
 IDC_TARGET_LIST,
 LB_RESETCONTENT,
 (WPARAM)0,
 (LPARAM)0);

 for (x=0;StarList[x] != NULL;x++)
 SendDlgItemMessage(hDlg,
 IDC_TARGET_LIST,
 LB_INSERTSTRING,
 x,
 (LPARAM)StarList[x]);

 SetDlgItemText(hDlg, IDC_MISSION_VALUE, TEXT(" Destroy Star")
);
 SetDlgItemText(hDlg, IDC_TARGET_VALUE,
StarList[currentTarget]);

Page 71 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 SendDlgItemMessage(hDlg,
 IDC_TARGET_LIST,
 LB_SETCURSEL,
 currentTarget,
 (LPARAM)0);

 break;

 //+
 // make sure a target was picked.
 // this message will be sent if the user
 // clicks anywhere in the list box
 //-
 case IDC_TARGET_LIST :

 //+
 // Send an LB_GETCURSEL message to retrieve the index of the
currently
 // selected item, if any, in a single-selection list box.
 //-
 currentTarget = SendDlgItemMessage(hDlg,
 IDC_TARGET_LIST,
 LB_GETCURSEL,
 0,
 0);

 if (

 SendDlgItemMessage(hDlg,
 IDC_DESTROY_PLANET,
 BM_GETCHECK, 0,0) == BST_CHECKED) {

 SetDlgItemText(hDlg, IDC_TARGET_VALUE,
 PlanetList[currentTarget]);
 }
 else {
 SetDlgItemText(hDlg, IDC_TARGET_VALUE,
 StarList[currentTarget]);
 }

 break;

 //+
 // this message is received when a user clicks the IDC_ATTACK
button
 //-
 case IDC_ATTACK :
 {
 TCHAR authorizationCode[255];
 TCHAR missionString[255];
 TCHAR targetString[255];
 TCHAR executionString[255];

 //+
 // In a single-selection list box,
 // the return value is the zero-based index

Page 72 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 // of the currently selected item.
 // If there is no selection, the return value is LB_ERR.
 //-
 currentTarget =

 SendDlgItemMessage(hDlg, IDC_TARGET_LIST, LB_GETCURSEL, 0,0
);

 //+
 // The GetDlgItemText function retrieves the title or
 // text associated with a control in a dialog box.
 //-
 GetDlgItemText(hDlg,
 IDC_AUTHORIZATION_CODE,
 authorizationCode,
 32);
 GetDlgItemText(hDlg, IDC_MISSION_VALUE, missionString, 32
);
 GetDlgItemText(hDlg, IDC_TARGET_VALUE, targetString, 32);

 //+
 // The wsprintf function formats and stores a series of
characters
 // and values in a buffer. Any arguments are converted and
copied

 // to the output buffer according to the corresponding
format
 // specification in the format string.
 //
 // The function appends a terminating null character to
 // the characters it writes, but the return value does
 // not include the terminating null character in its
 // character count.
 //
 // use this rather than sprintf() in a Win32-based
application
 //-
 wsprintf(executionString,
 TEXT("%s (%s) Authorization Code - %s, Has been carried
out!"),
 missionString,
 targetString,
 authorizationCode);
 //+
 // The MessageBox function creates, displays, and operates
 // a message box. The message box contains an application-
defined
 // message and title, plus any combination of predefined
icons
 // and push buttons.
 //
 // MessageBox() returns a value based on the type
 // indicated in the 4th parameter and user response.
 //
 // it is used similarly to the X/Motif
XmCreateQuestionDialog()
 //
 // dialog = XmCreateQuestionDialog (w, "notice", args, n);
 //
 //-

Page 73 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 MessageBox(hDlg,
 executionString,
 TEXT("Mission Execution"),
 MB_OK);
 }
 break;

 case IDC_EXIT:
 DestroyWindow(hDlg);
 break;

 default:
 return FALSE;
 }

 break;

 case WM_DESTROY:
 PostQuitMessage(0);
 break;

 case WM_CLOSE:
 DestroyWindow(hDlg);
 break;

 default:
 return FALSE;
 }

 return FALSE;

}

//+
// This example application is based on DialogBox.
//
// WinMain calls CreateDialog(), shows that window and
// enters the message loop.
//
// This sort of implementation can be used to quickly
// develop applications that require a small GUI.
// There is however, nothing to prevent large applications
// from using this model.
//-
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 MSG msg;
 hInst = hInstance;

 //+
 // Create modeless dialog box.
 //
 // The CreateDialog macro creates a modeless dialog box from
 // a dialog box template resource.
 //
 // This resource is found in DialogWindow.rc.
 hExampleDlg =
 CreateDialog(hInstance,

Page 74 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 MAKEINTRESOURCE(EXAMPLE_DIALOG),
 (HWND)NULL,
 (DLGPROC)ExampleDlgProc);

 if (hExampleDlg != NULL) {
 ShowWindow(hExampleDlg, SW_SHOW);
 }

 while (GetMessage(&msg, NULL, 0, 0)) {
 if (hExampleDlg == 0 || !IsDialogMessage(hExampleDlg, &msg)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }

 return (msg.wParam);
}

Send feedback to Microsoft

© Microsoft Corporation. All rights reserved.

Page 75 of 75Chapter 11: Migrating the User Interface

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

